分享

通俗理解张量tensor

 安喜的空间 2023-09-10

背景

我们的目的是要用数学量来表示物理量,可是标量加上向量,都不足以表达所有的物理量,所以就需要扩大数学量的概念,张量就出现了。


概念

几何代数中定义的张量是基于向量和矩阵的推广,通俗一点理解的话,我们可以将标量视为零阶张量,矢量视为一阶张量,那么矩阵就是二阶张量。


定义

张量的严格定义是利用线性映射来描述的。与矢量相类似,定义由若干坐标系改变时满足一定坐标转化关系的有序数组成的集合为张量。 从几何角度讲, 它是一个真正的几何量,也就是说,它是一个不随参照系的坐标变换(其实就是基向量变化)而变化的东西。最后结果就是基向量与对应基向量上的分量的组合(也就是张量)保持不变,比如一阶张量(向量)a可表示为a = x*i y*j。由于基向量可以有丰富的组合,张量可以表示非常丰富的物理量。

换一种定义方式
一个(p,q)型张量,就是一个映射:


其中V是矢量空间,V*是对应的对偶空间。

啰嗦一下

如果一个物理量,在物体的某个位置上只是一个单值,那么就是普通的标量,比如密度。如果它在同一个位置、从不同的方向上看,有不同的值,而且这个数恰好可以用矩阵乘观察方向来算出来,就是张量。

张量的理解:张量是有大小和多个方向的量。这里的方向就是指张量的阶数。
空间维度n:一般我们使用3维空间,也可以是4维及以上维度。
张量阶数m:在固定的3维度空间再谈张量的阶数,阶数小于等于维数,即m<=n。
下面区分这个量:张量的阶数(张量的方向数)和所在空间的维数(所在空间的方向数)的区别
在二维空间里,二维二阶张量(平面应力张量)的每个方向都可以用二维空间两个方向表示。(区分2阶张量的2个方向,和二维空间的两个方向x,y)所以共有2^2=4个方向。
在三维空间里,三维二阶张量(空间应力张量)的每个方向都可以用三维空间三个方向表示。(区分2阶张量的2个方向,和三维空间的三个方向x,y、z)所以共有3^2=9个方向。

张量积

你认识矩阵乘积
向量的内积
以及矩阵和向量的乘法
于是你发现了共同点,有一个相同指标在经过求和之后就看不见了。如果你只是把两个量放在一起,不求和,只是构造多重线性的话,你就发现了张量积,比如向量
于是你构造了一个矩阵,也就是二阶张量。。类似的,对于矩阵当然也可以,
这里你就构造了一个四阶张量。

张量积这种东西有很多种理解方式,在不同的语境下面会有不同的看法。但是如果拿来跟矩阵乘积比较的话,我觉得比较好的说法是,张量积是一种万有乘积,而矩阵乘法是一种具体化。

我们现在手里有很多矩阵,然后希望把两个矩阵乘起来。一开始肯定想不到怎么乘,但是可以猜一些乘积的最基本的性质,比如说要和数乘是匹配的,也要和加法匹配也就是分配律。不管这个乘积是什么,都应当有这些基本的性质。那么这个时候张量积就出现了,他代表了最广的乘积,也是最弱的乘积,就仅仅满足上面说的那些基本性质。正因为是最弱的,所以一切具体的乘积都可以看成是从张量积的结果具体化得到的,也就是可以看成是万有乘积,或者是一个包络的乘积。

数学中,张量积,记为


可以应用于不同的上下文中如向量矩阵张量向量空间代数拓扑向量空间。在各种情况下这个符号的意义是同样的: 最一般的双线性运算。在某些上下文中也叫做外积


有两个(或更多)张量积的分量的一般公式。例如,如果 UV 是秩分别为 nm 的两个协变张量,则它们的张量积的分量给出为

所以两个张量的张量积的分量是每个张量的分量的普通积。

赠送···向量的理解

向量可以表示什么?
比如,我们可以用一个平面的法向量代表这个平面;物理上可以用向量代表力等。看来,向量可以表示很多东西,不过仔细想想向量也只表示了幅度(magnitude)与方向(direction)两个要素而已。

一个向量有很多种表示方式,我们可以用[0, 1]表示一个二维向量,也可以用平面、三维或更高维空间中的一条带箭头的线表示一个向量。我们都是知道(0, 0) —> (1, 1)可表示一个从(0, 0)到(1, 1)的有向线段(向量),那么,为什么可以用[0, 1]表示一个向量呢?

根据前面的讲解,我们知道一个向量就是空间中的一条有向线段,可以用一组坐标系的基和向量相应分量的乘积组合来表示。由于坐标系有很多种定义方式,基也就有很多种,对应的分量也会有很多种,但如果大家默认使用同一套基向量,那么基向量都不需要了,此时,想要表示一个向量,只要给定这三个分量即可,比如用0, 1表示一个向量,如果加上两个括号,这就是我们在书上经常看到的向量的列表示(0, 1),三维的有(1, 2, 1)。贴一个很有爱的图


参考资料
https://blog.csdn.net/pandamax/article/details/63684633
http://tieba.baidu.com/p/4139437334
https://www.zhihu.com/question/23720923
https://www.zhihu.com/question/269975252
https://zh./zh/%E5%BC%A0%E9%87%8F%E7%A7%AF

    本站是提供个人知识管理的网络存储空间,所有内容均由用户发布,不代表本站观点。请注意甄别内容中的联系方式、诱导购买等信息,谨防诈骗。如发现有害或侵权内容,请点击一键举报。
    转藏 分享 献花(0

    0条评论

    发表

    请遵守用户 评论公约

    类似文章 更多