8. 未来方向——扩展至Willis环以外的适应症 历史上,使用经典FD装置(如PED)治疗Willis环以外的动脉瘤的主要限制在于需要较大内径(ID)微导管(0.027英寸)进行装置部署。这些装置及其相关的输送系统是为直径4.0-5.0mm的近端血管设计的,因此在穿越远端颅内血管解剖结构时更具挑战性,因为远端血管往往更为曲折,供血血管的口径通常小于2.5mm。最早的两篇关于FD用于远端动脉瘤的报告中,PED Classic被用于M1、M2、A2和P2段的治疗[1,2]。在93个治疗的动脉瘤中,随访中位期为6至10.7个月,完全闭塞率为75%-83%,95.0%-95.4%的患者临床结果良好(mRS 0-2)。这些早期研究得出结论,FD治疗远端动脉瘤是可行的,并且对于传统外科或血管内技术不易治疗的动脉瘤,闭塞率和临床结果良好。 低剖面(Low-Profile)血流导向器在远端动脉瘤中的兴起 9. 未来方向——扩展破裂动脉瘤的适应症 9.1 腔内血流导向装置用于破裂动脉瘤的挑战
9.2. 囊内血流导向装置在破裂动脉瘤中的潜力 10. 未来方向——治疗困境、新兴技术与前沿研究 随着越来越多的患者通过FD装置获得有效、安全且持久的颅内动脉瘤(IAs)治疗,约30%的IAs现在都采用血流导向装置进行治疗,对精细化和改进FD产品的需求不断增长。最新一代的PED装置Pipeline Vantage利用对FD装置设计的更深入理解,采用了更高的孔密度(PPI,pics-per-inch)和更薄的DFT导丝,以提高输送过程中的贴合度,并为新内膜生长提供更坚固的支架。新型囊内血流导向装置(ISFD),如Artisse(Medtronic)和Contour(Stryker),正寻求扩展宽颈分叉动脉瘤(WNBAs)的血管内治疗选择,目前正在北美市场进行试验[。一种新型的血管内装置——颈桥装置——也正在进入市场。这些装置减少或消除了与囊内壁的接触,仅覆盖动脉瘤开口。eCLIPS(EVasc Medical Systems Corp)是一种颈桥装置,具有弹簧圈辅助支架和血流导向装置的特点,同时还允许通过装置进行微导管穿行以增加弹簧圈填充。(关于分叉部治疗器械的详细介绍,可以查看往期内容--分叉部动脉瘤的血管内治疗:治疗策略和器械发展) (Artisse) (Contour) (eCLIPS) 10.1. 宽颈分叉部动脉瘤治疗中的临床平衡 10.2. 超越表面修饰—生物可吸收血流导向装置的发展 10.3. 转录组学和放射基因组学 10.4. 机器人、人工智能和机器学习 11.结论 参考原文:Flow Diversion for Endovascular Treatment of Intracranial Aneurysms: Past, Present, and Future Directions *参考文献: [1].Lin, N.; Lanzino, G.; Lopes, D.K.; et al. Treatment of Distal Anterior Circulation Aneurysms with the Pipeline Embolization Device: A US Multicenter Experience. Neurosurgery 2016, 79, 14–22. [2].Primiani, C.T.; Ren, Z.; Kan, P.; et al. A2, M2, P2 Aneurysms and beyond: Results of Treatment with Pipeline Embolization Device in 65 Patients. J. NeuroInterv. Surg. 2019, 11, 903–907. [3].Möhlenbruch, M.A.; Kizilkilic, O. Multicenter Experience with FRED Jr Flow Re-Direction Endoluminal Device for Intracranial Aneurysms in Small Arteries. Am. J. Neuroradiol. 2017, 38, 1959–1965. [4].El Naamani, K.; Saiegh, F.A.; et al. Treatment of Cerebral Aneurysms with the FRED Jr Flow-Diverting Stent: A Case Series and Meta-Analysis. Clin. Neurol. Neurosurg. 2022, 223, 107483. [5].Hanel, R.A.; Cortez, G.M. Patient Outcomes after Treatment of Brain Aneurysm in Small Diameter Vessels with the Silk Vista Baby Flow Diverter: A Systematic Review. Interv. Neuroradiol. J. Peritherapeutic Neuroradiol. Surg. Proced. Relat. Neurosci. 2024, 30, 5–13. [6].Cagnazzo, F.; Di Carlo, D.T.; Cappucci, M. Acutely Ruptured Intracranial Aneurysms Treated with Flow-Diverter Stents: A Systematic Review and Meta-Analysis. Am. J. Neuroradiol. 2018, 39, 1669–1675. [7].Cohen, J.E.; Gomori, J.M.; Moscovici, S. Flow-Diverter Stents in the Early Management of Acutely Ruptured Brain Aneurysms: Effective Rebleeding Protection with Low Thromboembolic Complications. J. Neurosurg. 2021, 135, 1394–1401. [8].Madaelil, T.P.; Moran, C.J.; Cross, D.T.; Kansagra, A.P. Flow Diversion in Ruptured Intracranial Aneurysms: A Meta-Analysis. Am. J. Neuroradiol. 2017, 38, 590–595. [9].Giorgianni, A.; Agosti, E.; Molinaro, S.; et al. Flow Diversion for Acutely Ruptured Intracranial Aneurysms Treatment: A Retrospective Study and Literature Review. J. Stroke Cerebrovasc. Dis. 2022, 31, 106284 [10].Al Saiegh, F.; Hasan, D.; Mouchtouris, N.; Zanaty.; et al. Treatment of Acutely Ruptured Cerebral Aneurysms With the Woven EndoBridge Device: Experience Post-FDA Approval. Neurosurgery 2020, 87, E16–E22. [11].Spelle, L.; Herbreteau, D.; Caroff, J.; Barreau, X.; et al. CLinical Assessment of WEB Device in Ruptured aneurYSms (CLARYS): 12-Month Angiographic Results of a Multicenter Study. J. NeuroInterv. Surg. 2023, 15, 650–654 [12].Xie, Y.; Tian, H.; Xiang, B.; Liu, J.; Xiang, H. Woven EndoBridge Device for the Treatment of Ruptured Intracranial Aneurysms: A Systematic Review of Clinical and Angiographic Results. Interv. Neuroradiol. 2022, 28, 240–249. [13].Mascitelli, J.R.; Lawton, M.T.; Hendricks, B.K.; et al. Endovascular Therapy Versus Microsurgical Clipping of Ruptured Wide Neck Aneurysms (EVERRUN Registry): A Multicenter, Prospective Propensity Score Analysis. J. Neurosurg. 2022, 137, 87–94. [14].Darsaut, T.E.; Keough, M.B.; et al. Middle Cerebral Artery Aneurysm Trial (MCAAT): A Randomized Care Trial Comparing Surgical and Endovascular Management of MCA Aneurysm Patients. World Neurosurg. 2022, 160, e49–e54. [15].Darsaut, T.E.; Desal, H.; et al. Comprehensive Aneurysm Management (CAM): An All-Inclusive Care Trial for Unruptured Intracranial Aneurysms. World Neurosurg. 2020, 141, e770–e777. [16].Pierot, L.; Lamin, S.; Barreau, X.; et al. Coating (Coating to Optimize Aneurysm Treatment in the New Flow Diverter Generation) Study. The First Randomized Controlled Trial Evaluating a Coated Flow Diverter (P64 MW HPC): Study Design. J. NeuroInterv. Surg. 2023, 15, 684–688. [17].King, R.M.; Peker, A.; Epshtein, M.; et al. Active Drug-Coated Flow Diverter in a Preclinical Model of Intracranial Stenting. J. NeuroInterv. Surg. 2023, 16, 731–736. [18].Bakker, M.K.; Ruigrok, Y.M. Genetics of Intracranial Aneurysms. Stroke 2021, 52, 3004–3012. [19].Hammoud, B.; El Zini, J.; Awad, M.; Sweid, A.; Tjoumakaris, S.; Jabbour, P. Predicting Incomplete Occlusion of Intracranial Aneurysms Treated with Flow Diverters Using Machine Learning Models. J. Neurosurg. 2023, 1, 1716–1725. [20].Tjoumakaris, S.I.; Hanel, R.; Mocco, J.; et al. ARISE I Consensus Review on the Management of Intracranial Aneurysms. Stroke 2024, 55, 1428–1437. |
|