黄金分割可以说在我们的生活中无处不在。大自然中同样有黄金分割存在,许多的植物、动物和自然景物都是按照这个比例关系构成的。如花朵的花瓣数目、蜂巢的结构、人的身材比例和树木枝叶的生长周期等等。黄金分割这种存在于自然界中的法则,使自然界形成了最佳状态-自然美。 古希腊、古罗马时期人们就开始认识到了黄金分割的存在,到了十四世纪文艺复兴运动的兴起,古希腊的数学和几何学理论由阿拉伯人传到了欧洲,意大利的科学家、数学家们开始深入地研究数学、几何学对黄金分割也有了更多的研究,数学家斐波那契发现了与黄金分割有关的斐波那契数列,后来科学家约翰内斯·开普勒证实了斐波那契数了与黄金分割率之间的关系。 数学和几何学的发展推动了意大利的艺术发展,艺术家们认识到数学和几何学对绘画的重要性。在艺术领域艺术家们引入透视法和黄金分割理论。画家达.芬奇开创了文艺复兴时期运用透视法和黄金分割的理论进行绘画创作的先河。 在我们的现代生活中也经常运用黄金分割的理论在经济、文化、社会学及艺术等领域,解决各种各样的实际问题。在艺术领域里艺术家在进行艺术创作时也会经常地应用黄金分割的法则。如:我们的家具、家电、汽车及各种各样的工业产品的外形设计,设计师们都遵循这个视觉美的黄金法则进行设计,遵循这个法则设计的产品基本上符合人类的审美要求。 黄金分割法则是人类的一个伟大的发现。我们在对美的研究和探索中对黄金分割有了更深刻的认识。为什么黄金分割能给人以美感? 黄金分割是一个几何学概念表示把线段进行分割,整体线段与被分割线段间的比例关系,它们的比值是1:0.618。同时,黄金分割也可以认为是对空间进行比例分割。我们按黄金比率把一个空间进行分割。空间被分割后,我们会觉得分割点两侧仍然保持均衡。 这是因为我们的视觉中心落在了分割点上,这个点就是我们在视觉上的稳定的重心,这时这个重心让人心理上产生了安全感。这种空间的分割没有让人感到人与空间产生矛盾,心理上不会产生紧张感,让人觉得这种空间分割具有舒适感,所以很容易被我们接受。恰恰是这种视觉重心的稳定感和空间的安全感符合了人的心理需求和审美需求,因此按照黄金分割率进行的空间分割能够让分割点两侧的空间保持均衡状态。 黄金分割与对称形式是两种不同的均衡的状态和形式美。在视觉上会产生不同的效果,在人们的心理上也有不同的反应。对称是一个已知空间被对称点也是它的分割点,分割为相同的两部分,那么这两个空间就是1:1的等比例关系,这种等比关系是恒定的不变的。对称是是一种绝对的平衡。 假设这个对称空间,如果有一方减掉或加上一部分,对称点不变,另一方也不变,那么这个对称空间就会失去平衡。一旦这种空间平衡被打破,空间的绝对平衡关系就失去了,我们就会出现视觉的缺失,从而造成心理失衡。这种心理失衡就会让人感到沮丧,容易让我们的心理产生恐惧感。同时也让我们丧失了空间对称的美感。 如果要保持空间的对称,我们就必须在分割点的两侧同时增减1:1等量的空间,才能保证空间的绝对平衡,所以对称形式是无差别的绝对的平衡。对称形式的特征是缺乏活力、让人感到庄重,整齐划一,中心突出,是一种等比例关系的美。 黄金分割是一种比例分割,1:0.618是一个恒定的比例关系,黄金分割不是一种绝对的平衡而是一个相对的平衡。我们可以根据黄金分割率对分割点两侧的空间分割进行动态的调整,为了确保空间的平衡,分割点的位置也是相对的。黄金分割率Ф=1.618是一个常数。 在一个已知的平衡的空间中,我们做黄金分割,如果我们对分割点两侧的空间的大小进行动态调整,一方减掉或加上一部分,另一方为了保持空间的平衡就会同时发生变化,那么这个黄金分割的分割点就会按比例调整位置,以确保空间依旧保持平衡,因此不存在空间平衡被打破的问题。 只要比例关系Ф=1.618保持不变,调整黄金分割点就能始终保证整个空间保持平衡,所以在分割点两侧的空间不必相同或相等,它可以更自由,富于变化。我们的视觉中心也随着分割点的位置在不断变化,这一调整并不影响我们的视觉平衡和心理平衡。这种变化也不会影响空间的平衡之美,我们的心理安全感就不会被打破,美感就会始终保持不变。 黄金分割的这种对空间的动态调整,打破了对称形式的庄重沉稳、整齐划一的美感。黄金分割保持空间平衡的形式更加活跃、生动,从而产生韵律美,空间形成了对立的统一。这种形式美影响人的视觉感官,空间形态给人以极强的动感,使得我们感受到空间产生了动态平衡,感受到韵律美。因此黄金分割的这个特点被广泛的应用在近现代的艺术的创作中。 我们开始研究黄金分割理论并应用到艺术创作中最早要从古希腊和古罗马说起,世界上第一个发现黄金分割法则的人是古希腊数学家、哲学家毕达哥拉斯(Pythagoras),他发现了1:0.618的黄金比例。 约公元前580年至公元前500(490)年毕达哥拉斯出生在现在的希腊爱琴海中的萨摩斯岛的一个贵族家庭,他聪明好学,自幼就接受了良好的教育,学习几何学、自然科学和哲学的知识。成年后的毕达哥拉斯在世界各地游历,学习各种文化,成为一个学识渊博的人。在他49岁的时候回到家乡萨摩斯。 毕达哥拉斯是一位反对僭越制度,具有民主思想的思想家。公元前520年毕达哥拉斯反对当时萨摩斯的僭越主波吕格拉底的统治,他离开萨默斯前往西西里岛,最后定居在意大利的克罗托内。在那里他创办学校、招收学生宣传自己的哲学思想、政治主张和几何学思想。随着他的追随者的增加,逐渐地形成了一个集宗教、政治和学术为一体的毕达哥拉斯学派。也正是这个毕达哥拉斯学派对几何学进行探讨和研究并提出了黄金分割这一概念,他们研究过的正五边形和正十边形的作图,正五边形和正十边形的边角关系正好是1:0.618这个比值。在正五边形内绘制的五角星成为毕达哥拉斯学派这个团体的标志。 公元前四世纪,古希腊数学家欧多克索斯(Eudoxus)生于约公元前400年卒于约公元前347年,是第一个对黄金分割也被称为“中末比”进行系统地研究的人,他在几何学研究的基础上区分了“数”和“量”的概念,并提出了比例理论。 与此同时公元前387年古希腊哲学家、数学家柏拉图建立几何学院。随后进入过柏拉图学院学习的欧几里德写出了《几何原理》一书,这本著作奠定几何学研究的基础。欧几里得在书中系统的论述了黄金分割,在这本书的第二卷几何与代数中他写道:“分已知线段为两部分,使令线段与一小线段构成的矩形面积,等于另一小线段上的正方向面积。”这部书成为最早的记录黄金分割的著作。 简单地说,有已知线段AB为1,按比例将其划分为两部分,将C点作为分割点,那么线段AC与CB的比就等于线段AB与AC的比,通过数学计算就可以得到比值1:0.618。 这一比例恰好是1和5的平方根之和的一半。 古希腊人对几何学的研究不仅仅停留于理论的研究,很多的建筑和雕塑艺术都充分的体现了他们具有丰富的数学和几何学的知识,如:公元前490-430年菲迪亚斯(Phidias)制作的帕特农神庙的雕像,奥林匹亚的宙斯神像和雅典卫成的厄瑞克特翁神庙等几乎都体现了黄金比率。 公元前32年到公元前22 年之间的古罗马学者维特鲁威在数学研究的基础上撰写了《建筑十书》在这部书中他谈到了黄金分割与人体比例的关系。维特鲁威认为人体的完美比例就如同一座完美的建筑一样,具有完美的比例关系。维特鲁威的《建筑十书》对达·芬奇产生了深刻的影响,1501年他画了《维特鲁威人》再现了维特鲁威对人体美学的研究成果。 公元十二世纪末到十三世纪初意大利的数学家斐波那契(Fibonacci,1170-1250)发现了与黄金分割存在联系的数列。在他的《珠算原理》(Liber Abaci)中,提到了以他的名字命名的——Fibonacci数列,数列1,1,2,3,5,8,13,21,34……从第3个数字其起每个数字为前两个数字之和。斐波那契在书中以兔子的繁殖为例子讲解了数列问题又被称为“兔子数列”。 大自然中蕴含着神奇的斐波那契数列例如:树木枝条的生长周期,很多花草的花瓣数目,3瓣花瓣的有百合花,5瓣花瓣的有扶桑,8瓣花瓣的有格桑花,13瓣花瓣的有万寿菊,松塔的形态内就有8到13 的关系,分别是8条右螺旋线和13条左螺旋线。向日葵的是根据对数螺旋线排列的,有顺时针和逆时针两种方向的对数螺旋,呈斐波那契数列状。向日葵是34或55,大向日葵是89和144,还曾发现更大的向日葵有144和233条螺线,它们都是相邻的两个斐波那契数。 如果我们把斐波那契数列中相邻的两个数相除,其比值都约等于1.618,也就是接近黄金分切率Φ(golden ratio),1.618033988749894848204586834...。随着数列中数值的不断增大,那么相邻的两个数的比值就越来越接近Φ,当相邻的两个数的比值等于Φ时,则数字接近无穷大。所以斐波那契数列与黄金分割存在着联系。 斐波那契数列中相邻两个数的比率接近黄金比率,它遵循着在特定规律下的有序的分布,具有逻辑性和秩序性的特点。它符合黄金分割的特点,如果我们把已知线段AB 进行黄金分割,C 点为分割点,然后又对黄金分割点两侧的线段的大小进行动态调整,C 点也随之调整,但始终保持线段AC与CB的比等于线段AB与AC的比,其比值一直是不变的Φ值。因此,我们也可以说斐波那契数列是黄金分割的另一种形式的体现。 我们把斐波那契数列中的数字作为半径的圆相切,连接四分之一圆弧,依次按照逆时针方向由内向外连接起来就描绘出了一条螺旋曲线,这条曲线被称为斐波那契曲线也称为黄金螺线。这条曲线呈现出渐变旋转的动态的韵律感,展现了比例均衡协调、和谐统一的美。 现代艺术设计中我们经常运用斐波那契螺旋线的原理进行艺术创作和工业设计如:家电外观、跑车外观的设计、苹果商标的设计,计算机内部电路板的电路布局等等。 十四世纪文艺复兴运动的兴起,意大利重新重视古希腊、古罗马的人文主义思想和科学思想,毕达哥拉斯、柏拉图和欧几里得等人的几何学思想又得到了重视,意大利的数学家、几何学家对前人的几何学理论进行了深入研究。数学家们对数学和几何学的研究对意大利的艺术领域产生了深远的影响,1420年建筑师F·布鲁内莱斯基发现了透视的灭点,并在佛罗伦萨的圣母百花大教堂前为公众做了实验。灭点的被证实使绘画从二维空间走向了三维立体空间。画家们的时空观发生了巨大的转变,绘画开始走上写实主义的道路。 1435年阿尔贝蒂的《绘画论》是第一部以几何学和数学为基数的系统研究透视学的绘画理论著作。数学、几何学理论成为文艺复兴时期艺术发展的重要组成部分。 文艺复兴时期的艺术家越来越注意构图的形式美,艺术家们在进行艺术创作时非常注意如何选择恰当的比例关系让我们产生视觉美,他们开始逐步把几何学中黄金分割的法则运用到绘画、雕塑和建筑上。黄金分割的理论对文艺复兴时期的绘画艺术起了重要作用,并得到了广泛的应用。特别是达·芬奇非常重视数学中的黄金分割在绘画中的应用。他的作品:《最后的晚餐》、《蒙娜丽莎的微笑》和《抱银鼠的女人》等都非常明显的运用了黄金分割的构图形式,画面中完美的比例关系展现在我们面前,表现出了一种特殊的形式美。 拉斐尔在他创作的众多的圣母像的作品中,大多采用稳定的三角形构图。在《雅典学院》这幅作品中更是吸收了达·芬奇《最后的晚餐》的黄金分割的构图形式,展现古希腊、古罗马的先贤们汇聚一堂的场景。 米开朗基罗的绘画和雕塑也用神圣的黄金比例塑造人物,他创作的包括大卫雕像在内的许多作品都展现出了完美的人体美。 1509年意大利数学家卢卡·帕西奥利(Luca Pacioli)出版了《神圣的比例》(De Divina Proportione) 一书,该书论述了数学中的比例的计算与几何学如何应用于艺术和建筑中。在这本书中他还特别关注到建筑和人物之间的比例关系。画家达·芬奇为该书绘制了插图。《神圣的比例》一书中帕西奥利还将数学和几何学的原理应用于大写字母的几何构成上,他把所有的字母都按照1:9的比例用直线和曲线构成,书中还绘制了字母精确几何结构的插图。 在十六世纪到十八世纪之间很多的科学家都对黄金分割继续进行研究和探索。德国数学家迈克尔·马斯特林(Michael Maestlin ,1550-1631),他发现了第一个已知的近似黄金分割比的小数。与他同时代的科学家约翰内斯·开普勒(Johannes Kepler,1571–1630)证明了黄金分割比是连续斐波那契数之比的极限。查尔斯·博内(Charles Bonnet,1720–1793)发现植物叶片的螺旋线排列在顺时针和逆时针这两个方向上的对数螺旋,通常是两个连续的斐波那契数列中的数。 到了十九世纪黄金分割理论研究达到了一个高潮。1835年马丁·欧姆在他的《纯粹初等代数》中用了“黄金分割”这个词来表示1:0·618的这种比例关系,人们开始使用这一说法并延续至今。1854年,德国数学家阿道夫·蔡辛(Adolph Zeising)他出版了《人体比例新理论》一书,他认为黄金比例是宇宙间美的法则。黄金分割的理论开始被广泛的应用到近现代音乐、绘画、雕塑艺术和建筑等各个领域。 黄金分割还有一个特别的衍生形式那就是三分法,也称“井”字构图法。三分法比较接近黄金分割,我们在绘画、摄影、建筑和平面设计中会经常使用这种构图方法。三分法的构图是将平面在横向和纵向上平均分成三等份,横线与竖线相交,形成“井”字型。每个交叉点都是我们的视觉中心点,这个交叉点也被称为趣味中心。在进行艺术创作时,我们可以在每个交叉点上放置一个主体,每个主体都处于平等地位,这些主体之间是平行关系;也可以在某一个交叉点上放置一个主体,突出画面中的主体地位,形成视觉焦点。三分法在实际运用中操作起来很简单,这种构图适宜画面中出现多个主体或多个形态处于平行焦点上,也可以是突出一个主体特殊地位的艺术创作。 黄金分割作为大自然中蕴含的一个美丽法则,被人类发现和运用到实际生活中,具有非凡的意义。德国天文学家开普勒将黄金分割比描述为一颗“珠宝”:“几何学有两大宝藏:一个是毕达哥拉斯定理,另一个是将一条线划分为极值和均值比率;第一个我们可以比作黄金,第二个我们可以称之为贵重的珠宝”。(Geometry has two great treasures:one is the Theorem of Pythagoras, theother, the division of a line into extreme and mean ration . the first We may compare to a measure of gold ; the second we may name a precious jewel) 自从文艺复兴运动的兴起,画家们就开始受到科学思想的影响,注重数学、几何学和透视学在绘画中的应用。文艺复兴时期的许多画家可以说是通才,他们在数学、光学和建筑学领域有着丰富的知识,这对于艺术的进步起了积极的作用。在音乐、绘画、建筑、和雕塑艺术等艺术上,很多的艺术家都参考黄金分割的法则进行艺术创作。如马萨乔、达·芬奇、拉斐尔、米开朗基罗和布拉曼特等人,这些艺术家的作品不仅让我们产生了视觉美,还感受到了作品中反应出来的人文主义思想。这些伟大的艺术家把艺术推向了更高的层次,把感性认识科学化、理论化,又通过自己的艺术实践把艺术之美展现在我们的面前。文艺复兴时期的艺术是理性和感性美的结合。 |
|