配色: 字号:
2011中考数学压轴题
2012-03-23 | 阅:  转:  |  分享 
  
随州市

22.(10分)在圆内接四边形ABCD中,CD为∠BCA外角的平分线,F为上一点,BC=AF,延长DF与BA的延长线交于E.

(1)求证△ABD为等腰三角形.

(2)求证AC?AF=DF?FE.



23.(14分)我市某镇的一种特产由于运输原因,长期只能在当地销售.当地政府对该特产的销售投资收益为:每投入x万元,可获得利润P=-(x-60)2+41(万元).当地政府拟在“十二?五”规划中加快开发该特产的销售,其规划方案为:在规划前后对该项目每年最多可投入100万元的销售投资,在实施规划5年的前两年中,每年都从100万元中拨出50万元用于修建一条公路,两年修成,通车前该特产只能在当地销售;公路通车后的3年中,该特产既在本地销售,也在外地销售.在外地销售的投资收益为:每投入x万元,可获利润Q=-(100-x)2+(100-x)+160(万元).

(1)若不进行开发,求5年所获利润的最大值是多少?若按规划实施,求5年所获利润(扣除修路后)的最大值是多少?、24.(15分)如图所示,过点F(0,1)的直线y=kx+b与抛物线y=x2交于M(x1,y1)和N(x2,y2)两点(其中x1<0,x2<0).(1)求b的值.(2)求x1?x2的值

(3)分别过M、N作直线l:y=-1的垂线,垂足分别是M1、N1,判断△M1FN1的形状,并证明你的结论.

(4)对于过点F的任意直线MN,是否存在一条定直线m,使m与以MN为直径的圆相切.如果有,请求出这条直线m的解析式;如果没有,请说明理由.

恩施自治州为⊙的直径,为⊙的切线,过点的弦

⊥交⊙于点,垂足为.

(1)求证:是⊙的切线;

(2)当=,且=时,求图中阴影部分的面积(结果

不取近似值).

24.(本小题满分12分)

如图,在平面直角坐标系中,直线:与轴交于点,与轴交于点,抛物线过点、点,且与轴的另一交点为,其中>0,又点是抛物线的对称轴上一动点.

(1)求点的坐标,并在图1中的上找一点,使到点与点的距离之和最小;

(2)若△周长的最小值为,求抛物线的解析式及顶点的坐标;

(3)如图2,在线段上有一动点以每秒2个单位的速度从点向点移动(不与端点、重合),过点作∥交轴于点,设移动的时间为秒,试把△的面积表示成时间的函数,当为何值时,有最大值,并求出最大值;

(4)在(3)的条件下,当时,过作轴的平行线交抛物线于、两点,问:过、、三点的圆与直线能否相切于点?请证明你的结论.(备用图图3)

























徐州市

24.(本题8分)如图,PA、PB是⊙O的两条切线,切点分别为A、B,

OP交AB于点C,OP=13,sin∠APC=。

(1)求⊙O的半径;(2)求弦AB的长。





25-(本题8分)某网店以每件60元的价格购进一批商品,若以单价80元销售.每月可售出300件

调查表明:单价每上涨l元,该商品每月的销量就减少l0件。

(1)请写出每月销售该商品的利润y(元)与单价上涨x(元)间的函数关系式:

(2)单价定为多少元时,每月销售该商品的利润最大?最大利润为多少?

26.(本题6分)如图,将矩形纸片ABCD按如下顺序进行折叠:对折、展平,得折痕EF(如图①);沿GC折叠,使点B落在EF上的点B’处(如图②);展平,得折痕GC(如图③);沿GH折叠,使点C落在DH上的点C’处(如图④);沿GC’折叠(如图⑤);展平,得折痕GC’、GH(如图⑥).(1)求图②中∠BCB’的大小;

(2)图⑥中的△GCC’是正三角形吗?请说明理由.



27.(本题8分)如图①,在△ABC中,AB=AC,BC=a㎝,∠B=30°。动点P以1㎝/s的速度从点B出发,沿折线B→A→C运动到点C时停止运动,设点P出发xs时,△PBC的面积为y,已知y与x的函数图象如图②所示,请根据图中信息,解答下列问题:(1)试判断△DOE的形状,并说明理由;(2)当n为何值时,△DOE与△ABC相似?





28.(本题12分)如图,已知二次函数的图象与x轴交于A、B两点,与y轴交于点P,顶点为C()。

(1)求此函数的关系式;

(2)作点C关于x轴的对称点D,顺次连接A、C、B、D。若在抛物线上存在点E,使直线PE将四边形ACBD分成面积相等的两个四边形,求点E的坐标;

(3)在(2)的条件下,抛物线上是否存在一点F,使得△PEF是以P为直角顶点的直角三角形?若存在,求出嗲你P的坐标及△PEF的面积;若不存在,请说明理由。



泰州市



26.(本题满分10分)如图,以点O为圆心的两个同心圆中,矩形ABCD的边BC为大圆的弦,边AD与小圆相切于点M,OM的延长线与BC相交于点N。

(1)点N是线段BC的中点吗?为什么?

(2)若圆环的宽度(两圆半径之差)为6cm,AB=5cm,BC=10cm,求小圆的半径。

27.(本题满分12分)已知二次函数的图象经过点P(-2,5)

(1)求b的值并写出当1<x≤3时y的取值范围;

(2)设在这个二次函数的图象上,

①当m=4时,能否作为同一个三角形三边的长?请说明理由;

②当m取不小于5的任意实数时,一定能作为同一个三角形三边的长,请说明理由。

28.(本题满分12分)在平面直角坐标系xOy中,边长为a(a为大于0的常数)的正方形ABCD的对角线AC、BD相交于点P,顶点A在x轴正半轴上运动,顶点B在y轴正半轴上运动(x轴的正半轴、y轴的正半轴都不包含原点O),顶点C、D都在第一象限。

(1)当∠BAO=45°时,求点P的坐标;

(2)求证:无论点A在x轴正半轴上、点B在y轴正半轴上怎样运动,点P都在∠AOB的平分线上;

(3)设点P到x轴的距离为h,试确定h的取值范围,并说明理由。

江苏省宿迁市

26.(本题满分10分)如图,在平面直角坐标系中,O为坐标原点,P是反比例函数y=(x>0)图象上的任意一点,以P为圆心,PO为半径的圆与x、y轴分别交于点A、B.

(1)判断P是否在线段AB上,并说明理由;(2)求△AOB的面积;

(3)Q是反比例函数y=(x>0)图象上异于点P的另一点,请以Q为圆心,QO半径画圆与x、y轴分别交于点M、N,连接AN、MB.求证:AN∥MB.



27.(本题满分12分)如图,在边长为2的正方形ABCD中,P为AB的中点,Q为边CD上一动点,设DQ=t(0≤t≤2),线段PQ的垂直平分线分别交边AD、BC于点M、N,过Q作QE⊥AB于点E,过M作MF⊥BC于点F.

(1)当t≠1时,求证:△PEQ≌△NFM;

(2)顺次连接P、M、Q、N,设四边形PMQN的面积为S,求

出S与自变量t之间的函数关系式,并求S的最小值.

28.(本题满分12分)如图,在Rt△ABC中,∠B=90°,AB=1,

BC=,以点C为圆心,CB为半径的弧交CA于点D;以点A为圆

心,AD为半径的弧交AB于点E.

(1)求AE的长度;

(2)分别以点A、E为圆心,AB长为半径画弧,两弧交于点F(F

与C在AB两侧),连接AF、EF,设EF交弧DE所在的圆于点G,

连接AG,试猜想∠EAG的大小,并说明理由.

南京市

26.(8分)如图,在Rt△ABC中,∠ACB=90°,AC=6㎝,BC=8㎝,

P为BC的中点.动点Q从点P出发,沿射线PC方向以2㎝/s的速度运

动,以P为圆心,PQ长为半径作圆.设点Q运动的时间为ts.

⑴当t=1.2时,判断直线AB与⊙P的位置关系,并说明理由;

⑵已知⊙O为△ABC的外接圆,若⊙P与⊙O相切,求t的值.



27.(9分)如图①,P为△ABC内一点,连接PA、PB、PC,在△PAB、△PBC和△PAC中,

如果存在一个三角形与△ABC相似,那么就称P为△ABC的自相似点.

⑴如图②,已知Rt△ABC中,∠ACB=90°,

∠ACB>∠A,CD是AB上的中线,过点B作BE⊥CD,垂足为E,试说明E是△ABC的自相似点.

⑵在△ABC中,∠A<∠B<∠C.

①如图③,利用尺规作出△ABC的自相似点

P(写出作法并保留作图痕迹);

②若△ABC的内心P是该三角形的自相似

点,求该三角形三个内角的度数.

连云港市

25.(本题满分10分)如图,抛物线y=x2-x+a与x轴交于点A,B,与y轴交于点C,其顶点在直线y=-2x上.

(1)求a的值;(2)求A,B的坐标;

(3)以AC,CB为一组邻边作□ACBD,则点D关于x轴的对称点D′是否在该抛物线上?请说明理由.

26.(本题满分12分)已知∠AOB=60°,半径为3cm的⊙P沿边OA从右向左平行移动,与边OA相切的切点记为点C.

(1)⊙P移动到与边OB相切时(如图),切点为D,求劣弧的长;

(2)⊙P移动到与边OB相交于点E,F,若EF=4cm,求OC的长;

28.(本题满分12分)某课题研究小组就图形面积问题进行专题研究,他们发现如下结论:

(1)有一条边对应相等的两个三角形面积之比等于这条边上的对应高之比;

(2)有一个角对应相等的两个三角形面积之比等于夹这个角的两边乘积之比;



现请你继续对下面问题进行探究,探究过程可直接应用上述结论.(S表示面积)

问题1:如图1,现有一块三角形纸板ABC,P1,P2三等分边AB,R1,R2三等分边AC.

经探究知=S△ABC,请证明.



















问题2:若有另一块三角形纸板,可将其与问题1中的拼合成四边形ABCD,如图2,Q1,Q2三等分边DC.请探究与S四边形ABCD之间的数量关系.

问题3:如图3,P1,P2,P3,P4五等分边AB,Q1,Q2,Q3,Q4五等分边DC.若

S四边形ABCD=1,求.

问题4:如图4,P1,P2,P3四等分边AB,Q1,Q2,Q3四等分边DC,P1Q1,P2Q2,P3Q3

将四边形ABCD分成四个部分,面积分别为S1,S2,S3,S4.请直接写出含有S1,S2,S3,S4的一个等式.



















常州市

27、(2011?常州)在平面直角坐标系XOY中,一次函数的图象是直线l1,l1与x轴、y轴分别相交于A、B两点.直线l2过点C(a,0)且与直线l1垂直,其中a>0.点P、Q同时从A点出发,其中点P沿射线AB运动,速度为每秒4个单位;点Q沿射线AO运动,速度为每秒5个单位.

(1)写出A点的坐标和AB的长;

(2)当点P、Q运动了多少秒时,以点Q为圆心,PQ为半径的⊙Q与直线l2、y轴都相切,求此时a的值.



28、(2011?常州)在平面直角坐标系XOY中,直线l1过点A(1,0)且与y轴平行,直线l2过点B(0,2)且与x轴平行,直线l1与直线l2相交于点P.点E为直线l2上一点,反比例函数(k>0)的图象过点E与直线l1相交于点F.

(1)若点E与点P重合,求k的值;

(2)连接OE、OF、EF.若k>2,且△OEF的面积为△PEF的面积的2倍,求E点的坐标;

(3)是否存在点E及y轴上的点M,使得以点M、E、F为顶点的三角形与△PEF全等?若存在,求E点坐标;若不存在,请说明理由.

25.(本题9分)如图(1),Rt△ABC中,∠ACB=-90°,CD⊥AB,垂足为D.AF平分∠CAB,交CD于点E,交CB于点F

(1)求证:CE=CF.

(2)将图(1)中的△ADE沿AB向右平移到△A’D’E’的位置,使点E’落在BC边上,其它条件不变,如图(2)所示.试猜想:BE''与CF有怎样的数量关系?请证明你的结论.

26.(本题14分)如图,在平面直角坐标系中.四边形OABC是平行四边形.直线经过O、C两点.点A的坐标为(8,o),点B的坐标为(11.4),动点P在线段OA上从点O出发以每秒1个单位的速度向点A运动,同时动点Q从点A出发以每秒2个单位的速度沿A→B→C的方向向点C运动,过点P作PM垂直于x轴,与折线O一C—B相交于点M。当P、Q两点中有一点到达终点时,另一点也随之停止运动,设点P、Q运动的时间为t秒().△MPQ的面积为S.

(1)点C的坐标为___________,直线的解析式为___________.(每空l分,共2分)

(3,4);

(2)试求点Q与点M相遇前S与t的函数关系式,并写出相应的t的取值范围。



2011年黑龙江省黑河市

23、(2011?黑河)已知:二次函数y=x2+bx+c,其图象对称轴为直线x=1,且经过点(2,﹣).(1)求此二次函数的解析式.

(2)设该图象与x轴交于B、C两点(B点在C点的左侧),请在此二次函数x轴下方的图象上确定一点E,使△EBC的面积最大,并求出最大面积.26、(2011?黑河)在正方形ABCD的边AB上任取一点E,作EFAB交BD于点F,取FD的中点G,连接EG、CG,如图(1),易证EG=CG且EGCG.



(1)将△BEF绕点B逆时针旋转90°,如图(2),则线段EG和CG有怎样的数量关系和位置关系?请直接写出你的猜想.

(2)将△BEF绕点B逆时针旋转180°,如图(3),则线段EG和CG又有怎样的数量关系和位置关系?请写出你的猜想,并加以证明.

28、(2011?黑河)已知直线y=x+4与x轴、y轴分别交于A、B两点,∠ABC=60°,BC与x轴交于点C.

(1)试确定直线BC的解析式.

(2)若动点P从A点出发沿AC向点C运动(不与A、C重合),同时动点Q从C点出发沿CBA向点A运动(不与C、A重合),动点P的运动速度是每秒1个单位长度,动点Q的运动速度是每秒2个单位长度.设△APQ的面积为S,P点的运动时间为t秒,求S与t的函数关系式,并写出自变量的取值范围.

(3)在(2)的条件下,当△APQ的面积最大时,y轴上有一点M,平面内是否存在一点N,使以A、Q、M、N为顶点的四边形为菱形?若存在,请直接写出N点的坐标;若不存在,请说明理由.

27、(2011?湛江)如图,在Rt△ABC中,∠C=90°,点D是AC的中点,且∠A+∠CDB=90°,过点A,D作⊙O,使圆心O在AB上,⊙O与AB交于点E.

(1)求证:直线BD与⊙O相切;(2)若AD:AE=4:5,BC=6,求⊙O的直径.



28、(2011?湛江)如图,抛物线y=x2+bx+c的顶点为D(﹣1,﹣4),与y轴交于点C(0,﹣3),与x轴交于A,B两点(点A在点B的左侧).

(1)求抛物线的解析式;(2)连接AC,CD,AD,试证明△ACD为直角三角形;

(3)若点E在抛物线的对称轴上,抛物线上是否存在点F,使以A,B,E,F为顶点的的四边形为平行四边形?若存在,求出所有满足条件的点F的坐标;若不存在,请说明理由.



24、(2011?广州)已知关于x的二次函数y=ax2+bx+c(a>0)的图象经过点C(0,1),且与x轴交于不同的两点A、B,点A的坐标是(1,0)

(1)求c的值;

(2)求a的取值范围;

(3)该二次函数的图象与直线y=1交于C、D两点,设A、B、C、D四点构成的四边形的对角线相交于点P,记△PCD的面积为S1,△PAB的面积为S2,当0<a<1时,求证:S1﹣S2为常数,并求出该常数.

25、(2011?广州)如图1,⊙O中AB是直径,C是⊙O上一点,∠ABC=45°,等腰直角三角形DCE中∠DCE是直角,点D在线段AC上.

(1)证明:B、C、E三点共线;(2)若M是线段BE的中点,N是线段AD的中点,证明:MN=OM;

(3)将△DCE绕点C逆时针旋转α(0°<α<90°)后,记为△D1CE1(图2),若M1是线段BE1的中点,N1是线段AD1的中点,M1N1=OM1是否成立?若是,请证明;若不是,说明理由.





26.(1)求点B的坐标;(2)求证:当点P在x轴上运动(P不与Q重合)时,∠ABQ为定值;(3)是否存在点P,使得以A、O、Q、B为顶点的四边形是梯形?若存在,请求出P点的坐标;若不存在,请说明理由。

吉林省

25.如图,在⊙O中,AB为直径,AC为弦,过点C作CD⊥AB与点D,将△ACD沿点D落在点E处,AE交⊙O于点F,连接OC、FC.

(1)求证:CE是⊙O的切线。(2)若FC∥AB,求证:四边形AOCF是菱形。







六、解答题(每小题10分,共20分)

27.如图,抛物线1:y=-x2平移得到抛物线,且经过点O(0.0)和点A(4.0),

的顶点为点B,它的对称轴与相交于点C,设、与BC围成的阴影部分

面积为S,解答下列问题:

求表示的函数解析式及它的对称轴,顶点的坐标。(2)求点C的坐标,

并直接写出S的值。

在直线AC上是否存在点P,使得S△POA=S?s,PAQ的面积为ycm2,(这里规定:线段是面积为0的三角形)

解答下列问题:

(1)当x=2s时,y=_____cm2;当=s时,y=_______cm2

(2)当5≤x≤14时,求y与之间的函数关系式。

(3)当动点P在线段BC上运动时,求出S梯形ABCD的值。

(4)直接写出在整个运动过程中,使PQ与四边形ABCE的对角线平行的所有x的值.



六盘水市23.(2011贵州六盘水,23,14分)如图8,已知:△ABC是⊙O的内接三角形,D是OA延长线上的一点,连接C,且∠B=∠D=300。

(1)判断直线CD与⊙O的位置关系,并说明理由。

(2)若AC=6,求图中弓形(即阴影部分)的面积。25.(2011贵州六盘水,25,16分)如图10所示,Rt△ABC是一张放在平面直角坐标系中的纸片,点C与原点O重合,点A在x轴的正半轴上,点B在y轴的正半轴上,已知OA=3,OB=4。将纸片的直角部分翻折,使点C落在AB边上,记为D点,AE为折痕,E在y轴上。

(1)在图10所示的直角坐标系中,求E点的坐标及AE的长。

(2)线段AD上有一动点P(不与A、D重合)自A点沿AD方向以每秒1个单位长度向D点作匀速运动,设运动时间为t秒(0
(3)当t(0
湘西土家族苗族自治州

25.(本题20分)(湖南湘西,25,20分)如图.抛物线与x轴相交于点A和点B,与y轴交于点C.

(1)求点A、点B和点C的坐标.(2)求直线AC的解析式.

(3)设点M是第二象限内抛物线上的一点,且=6,求点M的坐标.

(4)若点P在线段BA上以每秒1个单位长度的速度从A运动(不与B,A重合),同时,点Q在射线AC上以每秒2个单位长度的速度从A向C运动.设运动的时间为t秒,请求出△APQ的面积S与t的函数关系式,并求出当t为何值时,△APQ的面积最大,最大面积是多少?



2011年柳州市

25.(11·柳州)(本题满分10分)

如图,已知AB是⊙O的直径,锐角∠DAB的平分线AC交⊙O于点C,作CD⊥AD,垂足为D,直线CD与AB的延长线交于点E.

(1)求证:直线CD为⊙O的切线;(2)当AB=2BE,且CE=时,求AD的长.

26.(11·柳州)(本题满分6分).如图,一次函数y=-4x-4的图象与x轴、y轴分别交于A、C两点,抛物线y=x2+bx+c的图象经过A、C两点,且与x轴交于点B.(1)求抛物线的函数表达式;(2)设抛物线的顶点为D,求四边形ABDC的面积;(3)作直线MN平行于x轴,分别交线段AC、BC于点M、N.问在x轴上是否存在点P,使得△PMN是等腰直角三角形?如果存在,求出所有满足条件的P点的坐标;如果不存在,请说明理由.





























第11页共11页













Q2



Q1



D



R1



R2



P2



P1



图2



C



B



A











































































E



P



D



A



A



A



C



C



C



B



B



B









O



Q



P



C



B



A



























第24题图3



第24题图1



第24题图2







第21题图









































A



B



C



图1



P1



P2



R2



R1



A



D



P1



P2



P3



B



Q1



Q2



Q3



C



图4



S1



S2



S3



S4



A



D



C



B



P1



P2



P3



P4



Q1



Q2



Q3



Q4



图3









































































































































































































































































































































































































































































































































































































































































































































































































































































































献花(0)
+1
(本文系大QQ头首藏)