配色: 字号:
sandvine
2014-04-29 | 阅:  转:  |  分享 
  




QualityofServiceinLTE



Contents

ExecutiveSummary................................1

Overview................................................2

NetworksCovered..................................2

HSPA<EInterworking......................3

CDMA<EInterworking.....................3

MVNOEnvironments............................4

TheFallofErlangandtheRiseofIP...........4

ProtocolStacks:LTEisallIP..................6

MechanicsofPer-HopDifferentiatedQueuing

.....................................................7

Keyfunctionsin3GPPPCCstandards..............7

3GPPPCCTheoryofOperation....................11

TFT...................................................12

PCCruleparameters..........................14

Whatisthe“End”inEnd-to-End?.................14

LTEQoSUseCases:FairshareTrafficManagement

..........................................................16

PCRFSignaling.....................................17

In-BandMarking(TEIDmodification)..........17

In-BandMarkingSGi(DSCPModification).....18

ComparisonofTechniques.......................18

AutomatedQoSControlforMobileNetwork

CongestionManagement.........................19

ConclusionsandRecommendations...............21





ExecutiveSummary

Aseachcommunicationsserviceprovider(CSP)transitions

variousnetworktypestoLTE,theefficienthandlingofsubscriber

QualityofService(QoS),bothinsideandacrossdifferent

networks,isapressingissue.

Inthissweeping,in-depthlookatvariousnetworktechnologies

andavailableapproachestoQoS-handlingwithinandacross

networks,Sandvinedrawsoutthekeyissuesandpresents

recommendationsforsoundNetworkPolicyControl:

?Affectednetworktypesandarchitectures

?Evolutionandconsequencesoftheall-IPnetwork

architecture

?Backgroundandexplanationofthe3GPPelementsused

inthedeliveryofservices,andtheirkeyfunctions

?Explanationofthe3GPPPCC(policyandcharging

control)theoryofoperation

?Issuesassociatedwiththeboundaryinterchangebetween

networktypesforQoS

?KeyquestionsanddecisionsCSPsfacewhendefiningand

managingend-to-endQoSinLTEandbetweennetworks

?Explanationofthethreepossiblemechanismsthatexist

forper-sectorprioritizationinnetworksthathave

deployedLTE

?Comparisonandprosandconsofeachofthepossible

QoS-handlingtechniquesforLTE

Finally,thepapershowshowtheinherentflexibilityofSandvine

technologyallowsourFairshareTrafficManagementtosupport

allthreeQoS-handlingmethodsforLTEnetworks,including

uniquesupportforthemosteffectiveandefficientapproach.













QualityofServiceinLTE

Page2

Overview

AlthoughthisdocumentfocusesonLTE(3GPPR9andlater),muchofthebackgroundformobile

networkQoScomesfromearlier3GPPrevisions.Inparticular,muchofthebaselineframeworkwas

definedin3GPPR7(shownbelowinFigure1),soitisusefultohighlightthedifferences.This

documentreferstoH-PLMNasthehomenetwork,theoperatortowhichthesubscriberpaysafee,and

theV-PLMNasthevisitednetwork,theonethesubscriberiscurrentlyattachedto.Thenormalcaseis

thattheH-PLMNandV-PLMNarethesame,andthesubscriberisnotroaming.



Figure1:Typicalinfrastructuralroaming,3GPPR7

NotcoveredareQoSissuesthatoccurinsidethehandset.Oldercircuit-switchedvoicehandsets

guaranteequalitydirectlyinthebasebandandreal-timeoperatingsystem.Newersmartphoneshave

movedtonon-real-timeoperatingsystems(BSD-basedforApple,Linux-basedforAndroid,Windows-

basedforMicrosoft),andthereisthestrongprobabilityof‘jitter’and‘lag’beingintroducedinsidethe

OSscheduleritself.

Inaddition,roamingbetweenLTEandHSPAnetworksispossible,asisroamingbetween3GPPand

3GPP2networks,andthishasaconsequenceonQoSandmappingbetweencapabilities.Therefore,the

boundaryinterchangebetweennetworksforQoSisthoroughlydiscussedinthispaper.

NetworksCovered

Theissuesandpointsdiscussedinthispaperareapplicabletothefollowingnetworktypesand

interactions:













QualityofServiceinLTE

Page3

HSPA<EInterworking

AmobileoperatorcurrentusingHSPAtechnologies,andmigratingtowardsLTE,willusuallysupport

softhand-off(e.g.,adual-modedevicewhichcanswitchmid-sessiondependingonavailable

coverage).ThistypeofnetworkisshowninFigure2.



Figure2:LTEandHSPAinterworking

CDMA<EInterworking

SomeoperatorscurrentlyuseCDMA(3GPP2)technologies,andaremigratingtoLTE.Aspartofthe

migrationtheymaysupportsofthand-off(e.g.,user-equipmentthatcanstartasessionononenetwork

andmovetoanothermid-session).Hardhand-offtechniquesarenotcoveredhere.Figure3showsa

networkdiagramforamixedCDMAandLTEoperator.



Figure3:LTEandCDMAinterworking,singleoperator













QualityofServiceinLTE

Page4

MVNOEnvironments

AnothercasecoveredisthatofanMVNO(MobileVirtualNetworkOperator).Therearetwotypesof

MVNO:fullvirtual(simplyamarketingbrand,nonetworkatall),andapartialinfrastructuralMVNO,

owninganHLR/AAAandaGGSN.ThelatterisshownbyFigure4.AnMVNOwithapartialinfrastructure

hastheabilitytocreatedifferentiatedradioaccessbearersviatheirGGSN,andcaremustbetakento

preventanimbalanceinend-consumerexperienceonthesharedinfrastructure.



Figure4:MVNOenvironment

TheFallofErlangandtheRiseofIP

Sincethebeginningofthe20

th

century,voicenetworkshavebeenengineeredforcapacityaccordingto

theErlangmodel.Incomparisontodatanetworks,voicenetworkshavesomekeysimplificationsthat

allowedthemodelingtooccur:

?Voiceistreatedasconstantbitrate(i.e.,onevoicecircuitusesconstantnetworkbandwidth)

?Voiceistreatedasasymmetricpath(bothdirectionsfollowthesamelinks)

?Voiceistreatedasasinglepath(nomulti-pathnetworksareused)

?Voicesessionsstartatapredictablerateaccordingtohumanbehaviour

?Voice‘packets’arefixedsize

?Sessionsgofrommany-to-one(handsetstovoiceswitch)anddonotinteractwitheachother

Asaconsequence,telephonynetworkproviderswereabletobuildtheirnetworkcapacityaccordingto

simpleandfixeddesignrules(e.g.,99.99%ofcallswouldcompleteatthebusiesthour).Itisassumed

thequalityofacallisBoolean–ifitconnects,ithasperfectquality;ifthereisinsufficientcapacity,it

isblocked(connectionadmissioncontrol).

Early-generationmobilenetworksintroducedsomecomplexitytovoiceErlanginthatthehand-off

betweenlocationshadtobehandledastheusermoved,buttheoverallrulesandtechnologiesstayed

thesame-anend-to-endcircuitfromtheuserhandsettothemobile-switchingcenter(andfromthere

tothecallrecipient)startedatapredictable,lowrateandusedafixedcapacityinasymmetric

fashiononasinglepath.













QualityofServiceinLTE

Page5

Asdataneedsgrew,IPpacket-switchednetworksbecamethede-factostandard.Networkengineering

indatawasperformedbasedonpeakobservedloadandforward-predictionmodelssuchasHolt-

Wintersforecasting.Capacity-basedbillingmodelsemergedbetweencarriersbasedon95-percentile.

QoSswitchedfromdeterministictoprobabilistic.Circuit-basedQoSwasreplacedbyper-hop

behaviour.Withinaserviceprovider,QoSmanagementmaybeperformedusingDifferentiatedServices

CodePoint(DSCP)tomodifytheprobabilityonaper-hop-basis.QoSmanagementbetweenoperatorsis

rare.Operatorstypicallyprovisionmanagedservicessuchasvideoandvoiceusingtraditionalcircuit-

switchedmodels,non-convergednetworks,ornetworksconvergedatthephysicallayerbutpartitioned

usingtechniquessuchasMultiprotocolLabelSwitching(MPLS).Networksarenormallytreatedasnon-

oversubscribedexceptforthe‘last-mile’consumeraccess.

Applicationsrequiringqualitygoalstypicallybuildthemintotheapplication(usuallywithbuffering,or

withcomplexcodecssuchasSkype’sSILK,whichallowforpacketloss).Theoversubscriptioninthe

fixednetworksisnormallysufficientforQoS-sensitiveapplicationssuchasSkypeandNetflixto

functioninabest-effortenvironmentmostofthetime.



Figure5:MRTGutilisedcapacitychart,95%lineshown

Asmobiledataemerged,networkengineeringbasedonobservedtrendsbecameproblematic.Thehigh

rateofadoptionofnewdevicesandnewapplicationsmeantthatcapacitycouldnotbeaddedquickly

enough.Thedisparitybetween‘busy’and‘non-busy’mobilesectorsisnowhighintermsofvolume,

andthesectorsthatarebusyvaryduetomobility.

Sincedataapplicationsusevariablepacketsizes,theytendtointeractwitheachotherpoorlyasthe

linksapproach70-80%utilization.Inparticular,latencytendstogoupexponentiallyasthelink

utilisationgoesover75%.ApplicationswhichuseTCPandlargepacketstendtodominatethe

throughput,creatinglatencyissuesforsmallerpacketapplications.



Figure6:Ethernetutilizationvs.loss/latency

0

20

40

60

80

100

120

140

0%

20%

40%

60%

80%

100%

120%

10%20%30%40%50%60%70%80%90%100%

L

a

t

en

c

y

(

m

s

)



Lo

ss(

%

)



Utilization(%)

EthernetUtilisationvs.Loss/Latency

LossLatency













QualityofServiceinLTE

Page6

ProtocolStacks:LTEisallIP

OneofthedesigngoalsofLTEwastobeentirelyIP(includingcarryingvoiceoverIP).Asa

consequence,QoSmustbeunderstoodinboththecontextofthe‘inner-tunnel’,whichinteroperates

withthepacketcoreandradionetwork,andthe‘outer-tunnel’,whichusestraditionalIPtraffic

engineeringtechniques.Thevarioustunnelingandencapsulationprotocolsthatarerequiredareshown

inFigure7.



Figure7:LTEmajortransportencapsulations

ItiscommonpracticeforanoperatortouseMPLSorothertunnelingtechnique(seeFigure8),andin

practicaltermsitisimpossibletoconveytheQoSmarkingsfrominner-tunnelstoouter-tunnels.Abest

practiceistoengineerthenetworksuchthatthereisonlyonepointofcongestion(theeNodeB).This

maybedifficulttoachieveastheS1-Umaybesignificantlyover-subscribed.Asaconsequence,the

usualrequirementistouseouter-marks(DSCP,MPLS-EX)thataredriveninconjunctionwiththeinner

marks(TEID).IftheP-GWisthelabel-edgerouterinthedownstreamdirection,onecanuseafeature

suchasCisco’s“ipuser-datagram-toscopy”,whichcausestheinner-packetencapsulatedbyGTP-Uto

alsodrivetheouterDSCP.ThiscaninfluencethetransportnetworkonS5andS1-Utosomewhatmatch

thedecisionswhichwillbemadebytheeNodeB(whicharebasedonthetunnel-ID(TEID)andthePDP

contextparameters).The“active-chargingservice”featurecanbeusedtoachievetheinverse-taking

un-encapsulatedpacketsfromSGiinterfaceandusingtheirDSCPmarktomaptoaspecificPDP-

context.



Figure8:PracticalLTEdeployment













QualityofServiceinLTE

Page7

MechanicsofPer-HopDifferentiatedQueuing

InIP-basednetworks,differentiatedserviceisperformedonaper-hopbasis.Themostcommon

techniquesusedareDifferentiatedServices(DiffServ,RFC2474,RFC2475,RFC3260),whichusesthe

6-bitDSCPfieldintheIPheader,andMPLS,whichalsousestheDiffServarchitecture,butwith

differentmarkingtechniques(RFC3270).Inparticular,MPLSsupports3-bits(8-levels)intheEXPfield.

In3GPP,theQoSClassIndicator(QCI)mapsdirectlytoDSCP.ThebasicclassesdefinedbyDiffServare

‘default’,‘expeditedforwarding’,and‘assuredforwarding’.Ofthese,expeditedforwardingisusedfor

‘strict’priority(e.g.,videoandvoice),and‘assuredforwarding’isusedforbusinessdifferentiation

(e.g.,weighted-fairpriority).

Oneofthelong-standingcomplexitiesofDiffServhasalwaysbeenitsbehaviourintunnels,and3GPPis

nodifferent.Ina3GPPenvironment,theoutermarkingisonlyusedbybackhaulnetworks,andinner

marksareignored.DiffServmaybeusedtomanageQoSonexternalnetworksandbemappedinto

3GPPbearers.Examplesofinterchangebetweenthetwoareproprietarypervendor,butinclude

Cisco’s“ipuser-datagram-toscopy”feature,whichcopiestheDSCPfieldfromtheinnerIPpacketto

theouterGTPheader,andCisco’s“active-chargingservice”feature,whichmapsun-tunneledpacket

DSCPfieldsintospecificradiobearersbymappingthemtoaspecificPDPcontext.Notethat,despite

thenumberoflevelssupportedinsignaling,individualequipmenttypesvaryinthenumberofqueues

supported,andinthequeuingbehaviour(strictvs.fair).Asaconsequence,manydistinct‘marks’map

tothesamebehaviouranditisimportanttounderstandtheinternalqueuingsupportprovidedbyeach

pieceofnetworkequipmentalongeachpossiblepath.

Keyfunctionsin3GPPPCCstandards

Beforemovingonit’simportanttothoroughlyreviewthesixmainfunctionsofthe3GPPPCCstandards

thatmanageservicesandQoSinmodernnetworks.ThefollowingcorefunctionsareshowninFigure9:

?SPR(SubscriptionProfileRepository)

?OCS(OnlineChargingSystem):optional-maybedealtwithusingGy/CCR

?AF(ApplicationFunction):oneperoperator-providedservice

?PCRF(PolicyChargingRulesFunction)

?PCEF(PolicyChargingEnforcementFunction)

?TDF(TrafficDetectionFunction):maybemergedintoPCEF



Figure9:3GPPPCCblockdiagram













QualityofServiceinLTE

Page8

AF

TheAF,ifinvolved,mayprovidethefollowingapplicationsessionrelatedinformation(i.e.,basedon

SIP

1

andSDP

2

?SubscriberIdentifier-typicallytheMSISDN(MobileSubscriberIntegratedServicesDigitalNetwork-

Number)oftheuser,ifknownbytheAF

):

?IPaddressoftheUE

?MediaType,MediaFormat(e.g.,mediaformatsub-fieldofthemediaannouncementandallother

parameterinformation(a=lines)associatedwiththemediaformat)

?Bandwidth

?Sponsoreddataconnectivityinformation(e.g.,allowingtheflowtobezero-ratedtowardsthe

consumer,andthechargeinaggregatetobedealtwithinsomeotherfashion)

?Flowdescription(i.e.,sourceanddestinationIPaddress,portnumbersandtheprotocol)

?AFApplicationIdentifier

?AFCommunicationServiceIdentifier(e.g.,IMSCommunicationServiceIdentifier),UEprovidedvia

AF

?AFApplicationEventIdentifier

?AFRecordInformation

?Flowstatus(forgatingdecision)

?Priorityindicator,whichmaybeusedbythePCRFtoguaranteeserviceforanapplicationsessionof

ahigherrelativepriority

?Emergencyindicator

?Applicationserviceprovider(i.e.,thediameterrealmorbusinessname)

SPR

TheSPRmayprovidethefollowinginformationforasubscriber,connectingtoaspecificpacket

gateway:

?Subscriber''sallowedservices(i.e.,listofServiceIDs)

?Foreachallowedservice,apre-emptionpriority

?Informationonsubscriber''sallowedQoS,including:

?theSubscribedGuaranteedBandwidthQoS;

?alistofQoSclassidentifierstogetherwiththeMBRlimitand,forreal-timeQoSclass

identifiers,GBRlimit.

?Subscriber''schargingrelatedinformation

?Spendinglimitsprofilecontaininganindicationthatpolicydecisionsdependonpolicycounters

availableattheOCSthathasaspendinglimitassociatedwithitandoptionallythelistofrelevant

policycounters

?Subscribercategory

?Subscriber''susagemonitoringrelatedinformation

?Subscriber''sprofileconfiguration

?Sponsoreddataconnectivityprofiles



1

SessionInitiationProtocol,RFC3261

2

SessionDescriptionProtocol,RFC4566













QualityofServiceinLTE

Page9

?MultimediaPriorityService(MPS)Priority(userpriority)

?IMSSignalingPriority

PCRF

APCRFhastwokeyfunctionsinthe3GPPPCCstandards:provisioningchargingrulestothePCEF

(performedonsessioninitiation),andcreating/destroyingdedicatedbearerPDPcontexts(andthus

radiobearers)inresponsetoarequestfromanApplicationFunction(AF).Itisimportanttonotethat

theuseofaPCRFisoptional;itisnotarequiredelementofa3GPPnetwork.

Theoriginalframersofthe3GPPPCCspecificationsanticipatedthePCRFinstallingdynamicrules(5-

tuplebased)onaper-flowbasis.In3GPPR8thiswasdeprecatedinfavourofapplicationdetectionand

control(ADC)rules(givingmuchgreaterscale),andthiswasformalizedinR11intheMay20113GPP

TSGSAWG2meeting.



Figure10:PCRFsystemarchitecture

PCEF

ThePCEFisthemaincomponentofPCC,anditsuseisnon-optional.Anoperatorcan(andcommonly

does)havepre-provisionedPCCrulesinthePCEF(otherbasicrulesarealsoprovisionedinthe

HLR/HSS).ThePCEFtypicallygetssubscriptioninformationfromtheAAAorS6ainterfacetowardsthe

HSS&AAA.ThePCEFperformsthefollowingprimaryfunctions:

?Gateenforcement.ThePCEFallowsaservicedataflow,whichissubjecttopolicycontrol,topass

throughthePCEFifandonlyifthecorrespondinggateisopen.Thisprovidesameansofblocking

unknownorunenforcedtraffic(andmaybeusedtoblock,forexample,userswithnocredit).

?ChargingTriggerFunctionwherethroughDiameterCreditControlitfeedsinformationtoanOnline

ChargingSysteminordertotrackusage.

?ChargingDataFunctionthroughofflinechargingrecordsrequiredfortypicalpost-paidservicesand

chargingreconciliation.

?QoSenforcement:

?QoSclassidentifiercorrespondencewithIPsession-specificQoSattributes.ThePCEFconvertsa

QoSclassidentifiervaluetoIP-sessionspecificQoSattributevalues(typicallyDSCP)and

determinetheQoSclassidentifiervaluefromasetofIP-sessionspecificQoSattributevalues.

?PCCruleQoSenforcement.ThePCEFenforcestheauthorizedQoSofaservicedataflow

accordingtotheactivePCCrule(e.g.,toenforceuplinkDSCPmarking).

?IP-sessionbearerQoSenforcement.ThePCEFcontrolstheQoSthatisprovidedtoacombined

setofservicedataflows.Thepolicyenforcementfunctionensuresthattheresourceswhich

canbeusedbyanauthorizedsetofservicedataflowsarewithinthe"authorizedresources"













QualityofServiceinLTE

Page10

specifiedviatheGxinterfaceby"authorizedQoS".TheauthorizedQoSprovidesanupper

boundontheresourcesthatcanbereserved(GBR)orallocated(MBR)fortheIPsessionbearer.

TheauthorizedQoSinformationismappedbythePCEFtoIPCANspecificQoSattributes.

DuringIP-CANbearerQoSenforcement,ifpacketfiltersareprovidedtotheUE,thePCEFshall

providepacketfilterswiththesamecontentasthatintheservicedataflowtemplatefilters

receivedovertheGxinterface.

TDF

Introducedin3GPPrelease11,theTDFcomponentisstillintheprocessofbeingstandardizedandhas

notyetbeenwidelyadopted.Itsexistencedemonstratesindustryrecognitionoftheriseand

predominanceofover-the-topapplications,whichdonotuseSIPandatraditionalAF.TheTDFmaybe

deployedintwodifferentways:itmaysignalonaperflowbasisafterdetectiontowardsthePCRF,or

itmayacttoperformthegating/redirection/bandwidthlimitationwithoutinformingthePCRF.The

latterusecaseismorecommonasover-the-topapplicationsoftenoperateatmuchgreaterscalethan

thePCRFiscapableofhandling.

3GPPtechnicalspecifications23.203and29.212version12describetherelationshipbetweentheTDF,

PCRF,PCEF,variousDiameterinterfacesandotherrelatedelementssuchasanOCS.Thekeyaspect

thatdeterminescomplianceasa3GPPrelease11orhigherTDFissupportforthenewlyintroduced

DiameterSdreferencepointdescribedinTS29.212.DiameterSdisusedforcommunicationbetween

theTDFandPCRFusingapplicationdetectionandcontrol(ADC)rulesfullydetailedinTS29.212.

3

The

PCEFusesPCCrulesandtheDiameterGxreferencepointtocommunicatewiththePCRF(inplace

sincerelease7andalsodescribedinTS29.212).Decisionsaboutwhichapplicationstodetectcanbe

installedlocallytoaTDFand/ortowhatthespecificationsrefertoasa“PCEFenhancedwithADC”;

thatis,aPCEFwithanembeddedTDF,whichhasembeddedADCrules.

4

TheTDFmayalsoprovideusagemonitoringtowardsthePCRF(sothatthePCRFcanprovidean

additionalformofmeteringwhenanOCSisnotpresentorcapable).3GPPrelease12introduced

chargingsupporttotheTDF,effectivelyduplicatingchargingfunctionsalsodescribedforthePCEF

element.BoththeTDFandPCEFelementsmustinterpretmonitoringkeysfromthePCRFandcharging

keysfromtheOCS.

3GPPrelease12introduced

chargingsupporttotheTDF,effectivelyduplicatingchargingfunctionsalsodescribedforthePCEF

element.ForthosecaseswhereservicedataflowdescriptioncannotbeprovidedbytheTDFtothe

PCRF,theTDFperformsgating,redirection,bandwidthlimitationandchargingfordetected

applications.ForthosecaseswhereservicedataflowdescriptionisprovidedbytheTDFtothePCRF,

actionsresultingfromapplicationdetectionmaybeperformedbythePCEFaspartofthechargingand

policyenforcementperservicedataflowandbytheBearerBindingandEventReportingFunction

(BBERF)forbearerbinding,oractionsmaybeperformedbythePCEF/TDFusingApplicationDetection

andControl(ADC)rules.

5

Indeed,thechargingsectionsofTS23.203oftendescribethePCEFandTDF

elementsasoneentity;forexample,thecreditmanagementsectionofTS23.203isaddressedatthe

“PCEF/TDF”elementhavingorreceiving“PCC/ADC”rules.

6



3

3GPPTS29.212V12.2.0(2013-09),section4b

AnnexQofTS23.203providesthe

followingviewofthelogicalrelationshipbetweentheseelementsandtheirinterfaceswhenonline

chargingandanOCSarealsoinplay:

http://www.3gpp.org/ftp/Specs/html-info/29212.htm

4

3GPPTS23.203V12.2.0(2013-09),section4.5http://www.3gpp.org/ftp/Specs/html-info/23203.htm

5

Ibid.

6

Ibid,section6.1.3.













QualityofServiceinLTE

Page11





PCEF/

TDF

PCRF

OCS

Gx,Sd

Gy,Gyn

Sy



Figure11:UsageMonitoringviaOnlineChargingSystem(3GPPTS23.203v.12.2.0,AnnexQ)

ItisanticipatedthattheTDFwillperformothertriggers(e.g.,locationchanges,congestiondetection)

sothatthePCRFcanbecomeawareofthenetwork.Asofrelease12,thestandardsremainvague

regardinghowtopology/locationinformationwillbeprovidedfromthePCRFtotheTDF.Somevendors

offerlocationawarenessusingproprietaryfeatures.Theoretically,thestandardsprovideanoptional

mechanismforeverylocationchangetobepropagatedfromtheRANallthewaytothePCRF.

However,forpracticalreasonsthishasnotbeenimplemented,andthereforetheTDFaspurely

describedinthelateststandardswillfaceasimilarproblem.

7

OCS



TheOCSisoutofthescopeofPCC,butdoeshavearecent(andnotwidelyadopted)interfacetowards

thePCRFforpurposesofcoordinatingpolicywithcredit.Acommonapproachistoperformthis

functionviathePCEFdirectly(asittoocommunicateswiththeOCSviaDiameterGy).TheOCS,if

involved,mayprovidepolicycountersstatusforeachrelevantpolicycountertowardsthePCRFover

thenewly–emergingSyinterface.Inaddition,thePCEFhasaconnectionviaGytowardstheOCS,and

canmakeitsownevaluationofrulesbasedoncreditresponses.

3GPPPCCTheoryofOperation

Figure12showstheoverallPCCsystemanditsinterconnectionstonon-PCCcomponents.



Figure12:3GPPblockdiagram,expanded,withcorePCCcomponentsshaded



7

ForacompleteoverviewofSandvine’sapproachthe3GPPrelease12andTDFstandards,seeTechnologyShowcase–TrafficDetection

Function.













QualityofServiceinLTE

Page12

Thegeneralsignalingflowthroughthe3GPPPCCarchitectureisinitiatedbyeithertheuser(session

initiation)orviatheAF/TDF.Thefollowingfivemajorsignalingflowsareimportanttodescribe:

1.Subscriberinitiatesbearer(createsPDPcontext):Whenthesubscriberregisterstheirdevicetothe

network,afterauthenticationbytheS-GWandtheHSS,adefaultbeareriscreatedontheP-GW.

ThePCEFinitiatesamessagewithGxtoloadtherule-setfortheuser(whichisultimatelystoredin

theSPR).

2.Application-functioninitiatedchange:Whenactivated,theAFsignalsthePCRFviaRxtoindicatea

newserviceflow(matchedusingIPheaderbits),selectingtheQoSandchargingparameters.The

PCRFprovisionsthisruleintothePCEFwiththeappropriateTFT&QCI,whichcommencestheQoS

andchargingasspecifiedbytheAF.

3.TDF-initiatedchange:ConceptuallythisisidenticaltotheApplication-functioninitiatedchange,

exceptthatitisbasedondetectinganapplication,ratherthantheuserinitiatingtheapplication.

4.Network-initiatedchange(RATchange,lossofbearer,QoSchange,etc):Basedonaruleonthe

PCEF,atriggercanbesenttowardsthePCRF(usingdiameterGx).Examplesincludequota

exceeded,startuseofanapplication,entrancetoaspecificlocation,etc.

5.PCRF-initiatedchange.ThePCRFisfreetoruninternallogiconconditionsitisawareof,and

changetheprovisioningofrulesonthePCEFusingaGxRAR.

TFT

In3GPP,aTFT(TrafficFlowTemplate)isaclassifierthatmatchesonfieldsontheinner-IPofaGTP-U

tunnel.Thisinturncausesdifferentiatedradio-bearerperformance.Itcanmatchthefollowingfields:

?Sourceaddress(withsubnetmask)

?IPprotocolnumber(TCP,UDP)

?Destinationportrange

?Sourceportrange

?IPSecSecurityParameterIndex(SPI)

?TypeofService(TOS)(IPv4)

?Flow-Label(IPv6only)

Whetherusingthestatic-TFTmodelorthedynamicGx-signaledTFTmodel,thesamesequenceoccurs:

adedicatedbearer(secondaryPDPcontext)iscreated,andtrafficisforcedtomatchit.Operatorscan

createPDPcontextsdynamicallyusingGx,inwhichtrafficmatchingtheTFTfiltersintothecontext

basedonrulesinthePCEF,orhavingdynamicPDPcreationdonebythepacketgatewayitselfbasedon

trafficmatchingwithpre-provisionedvalues.ThiscanbeusefulifanupstreamdeviceonSGiwillmark

packetsmatchingcertainconditionswithDSCP.



Figure13:TFTmappingtoPDPcontexton3G(dedicatedbeareranalogoustosecondary)













QualityofServiceinLTE

Page13

TheLTEversionofthestandardsallowsuptonineTFTstobeusedperbearer.Inpriorrevisions,there

isonlyoneTFTallowed,whichisimportanttonoteifQoShandoffbetweenHSPAandLTE,orLTEand

CDMAisneeded.

TheTFTselectswhichPDPcontextisused,andtheQCIlabelisashort-handfortheQoSparameters

withinthecontext.NotetheQCIisashort-handlabelonly.ThestandardizedQCIcharacteristicsare

givenasroughguidelinesinTable6.1.7of3GPPTS23.203(v11.3.0),reproducedhere:

Table1:Table6.1.7from3GPPTS23.203V11.3.0

QCIResourceTypePriority

PacketDelay

Budget

PacketError

LossRate

ExampleService

1(Note3)

GBR

(guaranteed

bitrate)

2100ms10

-2



Conversational

Voice

2(Note3)4150ms10

-3



Conversational

Video(live)

3(Note3)350ms10

-3

Realtimegaming

4(Note3)5300ms10

-6



Non-

Conversational

Video(buffered)

5(Note3)

Non-GBR

1100ms10

-6

IMSSignaling

6(Note4)6300ms10

-6



Video(Buffered

streaming)

TCP

7(Note3)7100ms10

-3



Voice,Video

(Live),Interactive

Gaming

8(Note5)8

300ms10

-6



Video(buffered

streaming),TCP9(Note6)9

NOTE1:Adelayof20msforthedelaybetweenaPCEFandaradiobasestationshouldbesubtractedfromagiven

PDBtoderivethepacketdelaybudgetthatappliestotheradiointerface.Thisdelayistheaveragebetweenthe

casewherethePCEFislocated"close"totheradiobasestation(roughly10ms)andthecasewherethePCEFis

located"far"fromtheradiobasestation,e.g.incaseofroamingwithhomeroutedtraffic(theone-waypacket

delaybetweenEuropeandtheUSwestcoastisroughly50ms).Theaveragetakesintoaccountthatroamingisa

lesstypicalscenario.Itisexpectedthatsubtractingthisaveragedelayof20msfromagivenPDBwillleadto

desiredend-to-endperformanceinmosttypicalcases.Also,notethatthePDBdefinesanupperbound.Actual

packetdelays-inparticularforGBRtraffic-shouldtypicallybelowerthanthePDBspecifiedforaQCIaslongas

theUEhassufficientradiochannelquality.

NOTE2:Therateofnon-congestionrelatedpacketlossesthatmayoccurbetweenaradiobasestationanda

PCEFshouldberegardedtobenegligible.APELRvaluespecifiedforastandardizedQCIthereforeapplies

completelytotheradiointerfacebetweenaUEandradiobasestation.

NOTE3:ThisQCIistypicallyassociatedwithanoperatorcontrolledservice,i.e.,aservicewheretheSDF

aggregate''suplink/downlinkpacketfiltersareknownatthepointintimewhentheSDFaggregateisauthorized.

IncaseofE-UTRANthisisthepointintimewhenacorrespondingdedicatedEPSbearerisestablished/modified.

NOTE4:IfthenetworksupportsMultimediaPriorityServices(MPS)thenthisQCIcouldbeusedforthe

prioritizationofnon-real-timedata(i.e.mosttypicallyTCP-basedservices/applications)ofMPSsubscribers.

NOTE5:ThisQCIcouldbeusedforadedicated"premiumbearer"(e.g.associatedwithpremiumcontent)forany

subscriber/subscribergroup.Alsointhiscase,theSDFaggregate''suplink/downlinkpacketfiltersareknownat

thepointintimewhentheSDFaggregateisauthorized.Alternatively,thisQCIcouldbeusedforthedefault

bearerofaUE/PDNfor"premiumsubscribers".

NOTE6:ThisQCIistypicallyusedforthedefaultbearerofaUE/PDNfornon-privilegedsubscribers.Notethat

AMBRcanbeusedasa"tool"toprovidesubscriberdifferentiationbetweensubscribergroupsconnectedtothe













QualityofServiceinLTE

Page14

samePDNwiththesameQCIonthedefaultbearer.

PCCruleparameters

?QCI–QoSclassindicator

?ARP–Allocation/RetentionPriority--informationabouttheprioritylevel,pre-emptioncapability,

andpre-emptionvulnerability.ARPpriorityis1…15,1hashighestpriority.1-8areusedwithinthe

operatordomain,9-15areusedwhenroaming.

?GBR–guaranteedbitrate

?MBR–maximumbitrate

?SDF–servicedataflow

Packetsmatchingtherule(theTFT)willberoutedintoabearerthatmatchesthesettings(viatheQCI)

ofARP,GBR,andMBR.

Keyoperatordeployment&architecturedecisions

Thefollowingarekeyquestionsanetworkoperatorneedstoanswer:

1.WilldynamicPCC(flow-based)rulesbeused?ThisdramaticallyimpactsthescaleofthePCRF

deployment,theuseofDiameterroutingagents,andthesignalingloadontheevolvedpacket

core.

2.WillApplicationDetectionandControl(ADC)rulesbeused?TherichnessofcapabilitiesofthePCEF

willbethegatingfactorforservices.

3.WillstaticPCCrulesbeused?Anupstreammarkingdevicewithapplicationawarenessmaybe

needed.

4.IsQoSintheradiosufficient?Ifnot,allrulesneedtoapplytoboththeeNodeB(viatheTEIDand

PDPcontext)inadditiontoothernetworktechnologiesusingtheirownproprietarymethods(e.g.,

RSVP-TE,DSCP,MPLS-EX,…)

Whatisthe“End”inEnd-to-End?

Internetarchitecturesaregenerallybuiltaroundper-hop-behaviour,whereastraditional

telecommunicationsvoiceinfrastructureswerebuiltaroundcircuit-switching.Asaconsequenceof

thesedesignchoicestherearetradeoffsaswemigratetoLTE.Themostimportantsetoftrade-off

comesindefiningthe‘ends’inend-to-end.

Keyquestionsinclude:

?IsupstreamQoSimportant(user-equipmenttowardsInternet)

?Arecarrier-providedapplicationsincluded?

?Areover-the-topapplicationsincluded?

?Isaguaranteerequired,orisincreasedprobabilityofqualitysufficient?

?DoestheQoShavetoworkinin-networkhand-offscenariosbetweenLTEandearliertechnologies?

?DoestheQoShavetoworkinoff-networkhand-off(roaming)scenariosbetweenLTEandLTE

technologies?

?DoestheQoShavetoworkinoff-networkhand-off(roaming)scenariosbetweenLTEandnon-LTE

technologies?

?Ifthequalitycannotbeguaranteedshouldtheapplicationbedisallowed?(connectionadmission

control)













QualityofServiceinLTE

Page15

?Ifasessionisstartedinaregionwithsufficientcapacity,buttheusermovestoonewithout,isthe

sessionterminated?

?IsitsufficienttoperformtheQoSonlyinthemost-congestedpartofthenetworkandassumethe

remainderissufficientlynon-oversubscribedtonotmatter?

?IsQoSbeingusedasan‘improvement’ora‘degradement’?

?Ismobile-to-mobileQoSneeded(e.g.,push-to-talkovercellular)?

?Isthereanabilitytocontroldemandonsomeclassesofapplication(e.g.,videooptimization,

trafficmanagement)tocreateadditionalcapacity?

?Willlocalbreakoutbeusedinthehome-network?Inthevisited-network?Ifso,packetsmayflowa

differentpath.

Answerstotheabovequestionshelpnarrowthefocusontowhichandhowlayersofthenetworkare

affected,andthuswhichtechniquesareneeded.InFigure14,wecanseeastereotypicalLTEnetwork.

Ateachlevelthereareaggregationrouters,bringingtogethermultiplesources.



Figure14:Networklayers

Usuallythereismulti-pathrouting(e.g.,OSPFECMP)andasaconsequenceofpacketswitchingseveral

problemsmayarise(seeFigure15):

1.Theupstreamanddownstreampathsmaygooverdifferentlinks,orinthecaseoftheover-the-top

applications,entirelydifferenttransitserviceproviders.

2.Thepathsthatpacketsflowovermaybeunstable.

3.Latenciesmaybedifferentineachdirection.

4.Oversubscription(andthuslatency,loss,jitter)canbedramaticallydifferentineachdirection.

5.Networkingvendorsandeventechnologiescanbedifferentineachdirection.



Figure15:Typicalpacketpath













QualityofServiceinLTE

Page16

Inthecaseabove,if‘end-to-end’isdefinedassubscriber-to-subscribercontent,thenQoSmeanssome

networkengineeringoractivesignalingacrossmultipleoperatorsandtechnologies.Itwouldbehighly

wastefultoprovideguaranteesonalllinksforapossibleserviceflow.IntheexampleshownbyFigure

15,ifweassumetheserviceis1Mbpsofpeakbandwidth,thena?vemodelwouldbetocreatea1Mbps

‘constantbitrate’guaranteeonlinks1…25.Butifthereweresomewayofknowingthepacketflow,

andthepacketflowneverchanged,wewouldonlyneedthat1Mbpsguaranteeon1…6inthe

downstream.Thena?veapproachwastesfourtimesthecapacity.Amoretypicalapproachisto

guaranteethe1Mbpssolelyonlink6(orsometimeslink5…7),andengineerthe‘core’tohave

statisticalguaranteesonly.

Anotherdownsidetousingthe‘na?ve’approachisthatsignalingisrequiredtoalargenumberof

routers(alltheroutersintransit-A,transit-B,allthecorerouters,alltheaccessrouters).These

routersalmostcertainlyhavedifferentcapabilitiesandinterfaces(itislikelythe‘core’routerssupport

signalingviaBGPsolely,theedgeroutersmaysupportRADIUSCoAorCOPS,andtheroutersinthe

transitwouldbeunderdifferentadministrativecontrol,etc.).

Notethatthe3GPPPCCstandardsarewrittentoassumethereis‘negligible’lossbetweenthePCEF

andtheradiobasestation(seeNote2ofTable1).InpracticethisisanaggressiveassumptionforLTE

sincethebackhaul(S1-U)networkcanbecongested.

LTEQoSUseCases:FairshareTrafficManagement

SandvinehasalwaysworkedtoensureitsQoS-handlingcapabilitiesfunctionwellforallnetworktypes

andbetweennetworkstypes,whileeasilyadaptingtoongoingarchitecturalevolutions.Agood

exampleistheTrafficManagementproduct,whichincludesanadvancedfeature-setcalledFairshare.

SandvinehaswidelydeployedFairshareTrafficManagementincableenvironmentsusingPacketCable

MultiMedia(PCMM)prioritization.ThistrafficmanagementmechanismisdescribedinRFC6057

8

1.Identifylinksexperiencingcongestion

.PCMM

isadirectanalogof3GPPPCC,beingbasedonit(andwithanexplicitgoaltoharmonisetogetherin

Common-IMS(whichbringstogetherETSITISPAN,ETSI3GPP,3GPP2,andCableLabs).Thegeneral

theoryofoperationofFairshareTrafficManagementistodothefollowing:

2.Identifytheusersonthoselinkslikelytocausedisproportionatecongestioninthenexttime

interval

3.Reducetheschedulingpriorityofthoseusersuntileither

a.Congestiondisappears(withsomehold-downtimeorhysteresistopreventoscillation)or

b.Theuserisnolongercausingdisproportionatecongestion

Theneteffectistoshiftcongestion(andthuslatencyandloss)moretowardstheshort-termheavy

users.InDOCSIScablenetworksthisisachievedusingtheDOCSISpriorityfield(theequivalentofthe

ARPfieldin3GPP).DOCSISallows8levelsofpriority;thedefaultserviceflowisgivenpriority1,and

the‘heavyusersoncongestedlinks’areoverriddenwithadynamic,fully-wildcardrulethatgivesthem

priority0.Asaconsequence,theDOCSISschedulerprefersthepriority1usersoverthepriority0,and

thecongestionshifts.Ifwebringthisusecaseinto3GPPwerunintoaproblemthattheuser-

equipmentdoesnotsupportbeingsignaledinthesamefashionasDOCSIS,andthustheupstream



8

http://tools.ietf.org/html/rfc6057













QualityofServiceinLTE

Page17

cannotbeprioritized

9

Thesecondproblemisrecognizingwhichlink(whichmobilesector)theuserison.InDOCSISthisis

signaledwithDHCP/SNMP/IPDRprotocols.In3GPPthisisonlysignaledonbearercreation(enablingthe

userequipment)andpossiblyoninterimupdates(e.g.,UserLocationUpdate).InversionspriortoLTE,

thefixrequiresdeployingcomplexprobesintheIuB,IuPS,IuCSlinks.InLTE,itispossibletodeploy

theSandvinePolicyTrafficSwitch(PTS)intheS1-UandthusbecomeeNodeB-awareinaverysimple

fashion(theouter-IPoftheGTPtunnelistheeNodeB).Thusthethreefollowingpossiblemechanisms

existforper-sectorprioritizationinLTE:

.However,wecanperformprioritizationforcongestionmanagementinthe

downstream.

1.SignaltoaPCRFtosignaltotheP-GWtocreateadedicatedbearerwithawildcardserviceflow

(TFT).

2.Modifythetunnel-ID(TEID)tomatchonethatisstaticallycreatedontheP-GWthathasthe

requisiteQoSparameters.

3.DeployamarkingmechanismontheSGiandhaveithitastatically-provisioned,dynamicPCCrule

using,forexample,DSCPmarking.

PCRFSignaling

Inthismodel,shownbyFigure16,thePTSperformsreportingandcorrelationbasedontheouter-IPof

theGTP-Utunnel.TheFairshareTrafficManagementpolicymeasurestopusersonbusysectorsand

createssignalingviaRx(actingasanapplicationfunction).TheRxmessagecontainsthefollowing:

?MSDISDN

?SubscriberIP

?Priorityindicator(optionallybandwidth)

?Flow-identifier(wildcardedall-sourceIP,allports,overridingthedefaultTFT)



Figure16:RadioprioritisationviaPCRF

Matchingtrafficwillbede-prioritisedintheradiobytheeNodeBscheduler.

In-BandMarking(TEIDmodification)

Inthismodel,asshownbyFigure17,theFairshareTrafficManagementpolicymeasurestop-userson

busysectors,andmodifiestheTEIDoftheirtraffictomatchapre-definedbearerthatwasstatically

createdontheP-GW.Inaddition,DSCPmarkingorMPLS-EXmarkingcanbeperformedontheouter

tunneltocauseQoSprioritizationintheratiobackhaulitself.



9

InLTE,theUEcansupportmultipleprimarycontexts,butthiswouldmeanitwouldhavetounderstandinsomeproprietary

fashionhowtoroutetrafficfromonetotheother.AprimarycontexthasaseparateIPaddress.Theintentistostandardiseand

usethisforVoiceoverLTE,inwhichtheUEknowshowtoselecttherightdedicatedbearer.Thismayormaynotworkfor

genericoverthetopapplications.













QualityofServiceinLTE

Page18



Figure17:RadioprioritisationviaTEIDmodification

Matchingtrafficwillbede-prioritisedintheeNodeBradioscheduler.

In-BandMarkingSGi(DSCPModification)

Inthismodel,thereiseitherasignalingmechanisminplacefromtheS1-MME/S11interface(toteach

thePTSabouttheusertosectormapping),orasetofPTSelementsaredeployedintheS1-Utodothe

measurementpersector.APTSonSGimarkstrafficwithDSCP,andastaticruleontheP-GWcauses

thesepacketstobemappedintoadynamicallycreateddedicatedbearer(forexample,usingCisco’s

NQoSfeature).



Figure18:RadioprioritizationviaSGi

ComparisonofTechniques

Ofthethreetechniques(PCRFdynamicPCCrule,in-bandTEIDmarking,in-bandDSCPmarking)there

aredifferentstrengthsandweakness.Noneofthetechniquesreliablyhandleupstreamprioritization

duetolimitationsofcurrentuserequipment.Asaconsequence,theupstreamisbesthandledviaa

capacity-controlagentsuchastheSandvinePTS(asapolicer)orusingthe3GPPPCC‘GBR’.Providinga

maximumrateratherthanprioritizationisnotasefficientoreffective,butwillservesomepurpose.

ThePCRFwithdynamicPCCrulesmodelisthemostcomplex,requiringthemostmovingpartsandthe

highestsignalingrate.TheSGiin-bandmarking,otherthanrequiringaproprietaryconfigurationperP-

GW,willbethemostreliableandsimplesttomanage.Allthreetechniqueswillbeequallyeffectiveat

over-the-airradioprioritization,andthiseffectivenesswillbeafunctionoftheeNodeBscheduler

solely.

S1-Uprioritizationofbothinner-andoutertunneloffersthebestoverallperformanceasithandles

bothbackhaulandradiocongestion.Sandvine’ssupportforthisusecaseisuniquelyenabledbythe

SandScriptpolicylanguageandthefreeformpolicycreationenvironmentitprovides.













QualityofServiceinLTE

Page19

AutomatedQoSControlforMobileNetworkCongestionManagement

Sandvine’sFairshareTrafficManagementusesanadvancedfeaturecalledtheQualityGuardcongestion

responsesystem.QualityGuardcontinuouslymeasuressubscriberQoEinrealtimetodetectcongestion

intheaccessnetwork,andthenautomaticallymanagesQoStoremovecongestionbyshapingtraffic

classifiedas“low-value”(heavyshort-termuserswhoarecontributingtocongestion,ornon-real-time

applicationssuchasemailandbulkdownloads,oracombinationofboth).

Earlieritwasnotedthatasthroughputincreasesonanodeorrouter,latencyincreasesduetothe

growingqueuedelayandthe‘bursty’natureofTCP.Theincreaseisrathermarginal,butproportional

totheincreaseinbandwidth.Asthethroughputapproachescapacity,latencybeginstoincrease

exponentiallyuntilitreachesafinaltippingpointwheretheelementexperiencescongestivecollapse.

Whenanaccessnodeisnearoratcapacity,subscribersexperiencethegreatestdeteriorationofQoE.

Figure19showstherelationshipbetweenthroughputandlatencyontheroadtothecongestive

collapseofanaccessresource.



Figure19-RelationshipbetweenThroughputandLatency

QualityGuardusesaccessroundtriptime(aRTT)tomeasurereal-timesubscriberQoE,andthisisused

astheinputforaclosed-loopcontrolsystemthatcontinuouslyandautomaticallyworkstomaintainthe

optimumshapedtrafficoutputduringtimesofcongestion.Thisisthemaximumthroughput,ortarget

goodput,thattheaccessresourcecanmaintainwhilestillprovidingagoodQoEtothe95-99%of

subscribersthatfallintothehigh-valuetrafficcategory.Fromatechnicalstandpoint,QualityGuard’s

goalistomaintaintheoptimalgoodputfortheaccessresource,whichinmobilenetworksisa

constantlymovingtargetduetothevariablenatureofacell’smaximumcapacity.

Congestive

collapse













QualityofServiceinLTE

Page20



Figure20–MaximizingsubscriberQoEandinfrastructurelifetime

Usingreportsgeneratedbyasetofcongestion-relatedbusinessintelligencecalledQualityWatch,and

drivenbySandvine’sstandardreportinginterface,NetworkDemographics,thefollowingthree

graphicalreportsdemonstratethepositiveeffectofQualityGuard.

Figure21showstheneteffectofQualityGuardonLayer-7OTTbandwidthforaresourceexperiencing

massivecongestionproblems.Whenwebbrowsingtrafficbeginstoincreaseandreal-timesubscriber

QoEfallsbelowaconfiguredbenchmark,QualityGuardshapesthebulktransfertrafficofsubscribers

currentlycontributingtothecongestionconditionwhilecreatingcapacityfortheother95-99%ofusers

alsoattemptingtousetheresource.



Figure21–Trialresults–verifyingthedesiredeffectofQualityGuardonbandwidth

Lookingatthesameresultsfromadifferentperspective,Figure22showsQualityGuard’seffecton

latencyintheformofaRTTmeasurements,andFigure23showstheeffectonthecalculatedquality

score.

QualityGuard

enforces













QualityofServiceinLTE

Page21



Figure22–Trialresults–verifyingthedesiredeffectofQualityGuardonhigh-valuelatency



Figure23–Trialresults–high-valuelatencyexpressedasaqualityscore

ConclusionsandRecommendations

1.Anoperatorshoulddefineend-to-endtoincludetheradioscheduler(eNodeB)andthebackhaul,

andoverprovisiontheremainderofthenetworktoprovideprobabilisticguaranteesonly.

2.It’simportanttounderstandthelimitationsofboththebackhaulandchoseneNodeBequipment,in

particularthenumberofqueuessupported,andwhethertheyarestrict-priority(starvinglower

priorityflows)orweighted-fair.

3.Avoidtheuseofguaranteedbitrateclasses(mediaservicesarerarelyconstantbitrate,voiceuses

silencesuppression,audioisadaptivebitrate,videoishighlyvariablebasedonsourcecontent).

4.Concentrateonasinglenetworktechnologyfirst:hand-offconditionsbetweenHSPA<Eor

CDMAandLTEwillleadtoseverelimitationsinboththenumberandrichnessofserviceflows.

5.Focusonper-hopbehaviourandmarkingratherthan‘circuit’-basedtechniques.Inparticular,avoid

theuseofsignalingserviceflowsforover-the-topservicesduetotheirshort-lifetimeandhigh-

speed.









Copyright?2013Sandvine

IncorporatedULC.Sandvineand

theSandvinelogoareregistered

trademarksofSandvineIncorporated

ULC.Allrightsreserved.

EuropeanOffices

SandvineLimited

Basingstoke,UK

Phone:+4401256698021

Email:sales@sandvine.co.uk

Headquarters

SandvineIncorporatedULC

Waterloo,OntarioCanada

Phone:+15198802600

Email:sales@sandvine.com





2013-11-22

献花(0)
+1
(本文系曾藏管首藏)