配色: 字号:
poc2015_3421
2017-02-18 | 阅:  转:  |  分享 
  
SubstituenteffectsintheDiels–Alderreactions

ofbutadienes,cyclopentadienes,furansand

pyroleswithmaleicanhydride

YonggeQiu

a



Inthisstudy,activationenergiesintheDiels–Alderreactionsofaseriesofsubstitutedbutadienes,cyclopentadienes,fu-

ransandpyroleswithmaleicanhydridewerecalculatedbytheM06-2X/6-31G(d)method.Thesubstituenteffectsonthe

reactivityandtheendo–exoselectivityhavebeenexamined.Thestrengthofreactivityeffecthasanorderof

pyroles>furans>cyclopentadienes>butadienes,whichishighlycorrelatedwiththelowestunoccupiedmolecularorbital

energy,theelectronicchemicalpotentialandtheelectrophilicityofparentdienebutrelativelylesscorrelatedwiththe

highestoccupiedmolecularorbitalenergyandchemicalhardness.Thetrendthatanincreaseofnecleophilicitycaused

byanelectron-donatinggrouponthedienefavorstheendoTSiseffectivewithC2substitution.WithC1substitution,

thetrendisambiguousorevenopposite.Copyright?2015JohnWiley&Sons,Ltd.

Keywords:Diels–Alderreaction;substituenteffect;endo–exoselectivity;substituteddiene;maleicanhydride

INTRODUCTION

TheDiels–Alder(D–A)reactionhasbeenintensivelyinvestigated

andwidelyusedtoformsix-memberedringssinceitwasdiscov-

eredin1928.

[1]

Thiscycloadditioncantakeplacebetweenvari-

ouskindsofdienesanddienophiles,accompanyingwith

complicatedreactivity,regioselectivityandstereoselectivity

problems.

Intheprevailingopinion,theD–Areactionisaconcerted

pericyclicreactionviaasingle,cyclictransitionstate(TS).

[2–6]

Forasubstituteddienophile,therearetwopossibleorienta-

tionsapproachingtothediene,respectivelycorrespondingto

theendoandexoTSs.TheendoTSiswiththesubstituenton

thedienophileorientedtowardthedieneπsystemwhilethe

exoTSiswiththesubstituentorientedawayfromit.Formany

asymmetricallysubstituteddienes,thetwoTSsresultintwodif-

ferentproducts.Empirically,additionbytheendochannelis

usuallypreferredwhenanelectronwithdrawinggroup(EWG)

substituentsuchasacarbonylgroupispresentonthe

dienophile.ThispreferenceisalsocalledtheAlderrule,which

hasbeenregardedasausefulinitialguidetopredictionof

thestereochemistryofaD–Areaction.

[7]

Theendopreference

hasbeenexplainedoriginallyasaresultof“maximumaccumu-

lationofunsaturation”byAlder

[8,9]

andrationalizedlaterwith

thesecondaryorbitalinteraction(SOI).

[10–13]

Cyclopropeneis

thoughttobeanespeciallyattractivedienophilefortesting

theimportanceofSOI.

[14–16]

However,amixtureofbothstereo-

isomersisfrequentlyformed,andsometimes,theexoproduct

predominatesintheexperiments.

[17–20]

Eventheexistenceof

SOIshasbeenquestioned.

[21]

Investigationofendo–exoselec-

tivityintheD–Areactionisstillattractivetochemistsinthe

recentyears.

[13,22,23]

Computationalstudieshaverevealedsomeofthesigni?cant

effectsofLewisacidcatalysisontheendo–exostereoselectivity.

Fortheuncatalyzedreactionofbutadieneandmethylacrylate,

theexoTSsarepreferredovertheendo;whenitisBF

3

-

catalyzed,theendos-transTSisstronglypreferential.

[24]

This

in?uenceofLewisacidcatalysissuggeststhattheendo–exo

selectivitymaybechangedbyincreasingelectrophilicityof

thedienophile.Itmaybeinferredthatanincreaseof

necleophilicityoradecreaseofelectrophilicityforthediene

mayalsofavortheendoTS.However,sofar,thereisnot

anysystematicstudytosupportthat.Herein,weintentto

usemaleicanhydrideasthedienophileandtheoretically

investigatehowtheendo–exoselectivity,aswellasthe

reactivity,isin?uencedbythesubstituentelectroniceffects

intheD–Areactionswithsubstituteddienes.Thesedienes

includethefollowing:(E)-1-X-butadienes(BDs)and2-X-BDs,

1-X-cyclopentadienes(CPs)and2-X-CP,α-X-furansandβ-X-

furans,α-X-pyrolesandβ-X-pyroles(theirconcertedexoand

endoTSsareillustratedinchart1).Itisknownthatnumerous

D–AreactionsofdifferentdieneswithMAhavebeeninvesti-

gatedexperimentallyandtheoreticallyfromdifferentas-

pects,

[17,19,22,25–28]

,butinvestigationsofthesubstituent

electroniceffectsontheendo–exoselectivityhavebeenfew

documentedinourknowledge.

COMPUTATIONALMETHODS

Amonganumberofcomputationalmethodsevaluatedforstudying

D–Areactions,thedensityfunctionaltheoryB3LYPmethod

[29,30]

is

oneofthemostfrequentlyused.

[5,22,31–35]

However,themethodhas

asystematicerrorintreatingπ→σtransformations.

[36]

Inrecentyears,

theM06-2Xmethodbecomesmoreandmorewidelyacceptedforthe

Correspondenceto:YonggeQiu,DepartmentofChemistry,HanshanNormal

University,GuangdongProvince,ChaozhouCity,521041,China.

E-mail:qiuyongge@hstc.edu.cn

aY.Qiu

DepartmentofChemistry,HanshanNormalUniversity,GuangdongProvince,

ChaozhouCity521041,China

ResearchArticle

Received:6August2014,Revised:26December2014,Accepted:13January2015,PublishedonlineinWileyOnlineLibrary

(wileyonlinelibrary.com)DOI:10.1002/poc.3421

J.Phys.Org.Chem.2015Copyright?2015JohnWiley&Sons,Ltd.

cycloaddition.

[37–41]

B3LYPactivationbarriersarehigherthanM06-2X

resultsbyafewkcal/mol.

[41]

TheM06-2Xmethodwasemployedat

the6-31G(d)basissetlevelinthecurrentwork.Allthecalculations

wereperformedbytheGaussian09suiteofprograms.

[42]

(E)-1-X-BDs

and2-X-BDs,1-X-CPsand2-X-CPs,α-X-furansandβ-X-furans,α-X-

pyrolesandβ-X-pyroles(X?OH,OCH

3

,CH

3

,CH?CH

2

,H,Cl,CHO,CF

3

,

CNandNO

2

)werefullyoptimizedtoobtaintheirstablegeometries.

Thesecommonsubstituentswerechosenprimarilybasedontherange

oftheirelectroniceffectsquanti?edbyHammettconstantsσ

p

[43]

and

withrelativelylessstericeffects.ThegeometriesofconcertedTSswere

optimizedbyusingtheBernyalgorithm.Eachofthegeometrieswas

con?rmedbyfrequencyanalysistohaveoneornoneofimaginaryfre-

quency.Incaseofmorethanonestableconformerbyrotationofthe

C–Xbond,themoststableonewasusedtocalculatetheactivation

energy.

RESULTSANDDISCUSSION

TheGibbsfreeenergiesat298.15Kand1atmfordienes,

dienophilesandtheirconcertedTSsarecollectedinTableS-

1~8.FreeenergyofactivationΔG

act

isde?nedasthefreeenergy

differencebetweentheTSandthereactantsdienophileanddi-

ene.However,for(E)-1-X-BDsand2-X-BDs,ΔG

act

andΔG′

act

are

calculatedrespectivelyasthefollowing:

ΔG

act

?GTSeTC0GdienophileeTC0Gdieneins-transeT

ΔG’

act

?GTSeTC0GdienophileeTC0Gdieneins-ciseT

Foranacyclicdiene,thes-transconformationneedtotrans-

formintothes-cisform(alsocalleds-gauche)toparticipatein

theconcertedcycloaddition.

[17,44]

Reactionsof(E)-1-X-butadienesand2-X-butadienes

ActivationenergiesΔG

act

andΔG′

act

ofthereactionsof(E)-1-X-

BDsand2-X-BDsarecalculatedseparatelywithrespecttoexo

andendoTSsandlistedinTable1.

Inthereactionsof(E)-1-X-BDsandMA,ΔG

act

(exo)ranges

from20.38to29.73kcal/molandΔG

act

(endo)isfrom18.48to

27.70kcal/mol.Obviously,thesubstitutionhasastrongin?u-

enceonthereactivity.BothΔG

act

(exo)andΔG

act

(endo)in-

creasewithanincreaseofHammettconstantσ

p

inagood

linearcorrelation(Fig.1):

ΔG

act

exoeT?7:27σ

p

t24:83;R

2

?0:9299

ΔG

act

endoeT?6:72σ

p

t22:65;R

2

?0:9073

Itisdemonstratedthatthereactionisfavoredbyan

electron-donatinggroup(EDG)onthediene.Thetrendhas

beencon?rmedforalongtime.

[7,25]

Accordingtotheclassi?-

cationofD–Areactions,

[45]

theyarethenormalelectron

demand.

ΔG′

act

revealstheactualenergybarrierofcycloadditionby

separatings-trans→s-cistransformationenergyfromΔG

act

.The

transformationenergiesareca.3kcal/molfor(E)-1-X-BDs,differ-

entslightlyfromeachother.ThevariationsofΔG′

act

withσ

p

are

almostparalleledtothoseofΔG

act

.

Assumedthatthereactionsarekineticallycontrolled,the

endo–exoselectivityisjudgeddirectlyfromthedifferenceof

ΔG

act

(exo)andΔG

act

(endo)(ΔG

act

(exo-endo)),whichisequalto

Table1.ActivationfreeenergiesΔG

act

andΔG′

act

(inparen-

theses)intheD–Areactionsof(E)-1-X-BDsand2-X-BDswith

MAbytheM06-2X/6-31G(d)method(kcal/mol)

X(E)-1-X-BD2-X-BD



p

)ExoEndoExoWndo

OH20.3818.4825.5422.72

(C00.37)(17.74)(15.84)(22.98)(20.16)

OCH

3

23.7921.2526.5823.27

(C00.27)(21.07)(18.53)(24.07)(20.77)

CH

3

24.0321.9525.1622.12

(C00.17)(21.30)(19.21)(22.72)(19.68)

Vi24.5022.9922.9020.36

(C00.04)(22.30)(20.79)(22.90)(20.36)

H25.0222.6525.0222.65

(0.00)(22.62)(20.25)(22.62)(20.25)

Cl27.5025.4925.9225.20

(0.23)(24.85)(22.85)(23.66)(22.94)

CHO27.6825.3124.0422.01

(0.42)(24.80)(22.44)(23.86)(21.83)

CF

3

29.0725.5925.1524.78

(0.54)(26.32)(22.84)(23.74)(23.37)

CN29.5827.7026.4525.96

(0.66)(26.69)(24.80)(23.71)(23.22)

NO

2

29.7327.0223.0022.69

(0.78)(26.76)(24.05)(24.15)(23.84)

Figure1.PlotofΔG

act

versusσ

p

inthereactionsof(E)-1-X-butadienes

withmaleicanhydride

Chart1.

Y.QIU

wileyonlinelibrary.com/journal/pocCopyright?2015JohnWiley&Sons,Ltd.J.Phys.Org.Chem.2015

therelativestabilityoftheexoandendoTSs.Forall(E)-1-X-BDs,

thereactionsareendo-selectiveinsomedegreeandthereisno

obvioustrendfortheendo–exoselectivityresultingfromdonat-

ingorwithdrawingabilityofsubstituents.FortheparentBD,the

exoandendoTSsresultinasamecycloadduct,butΔG

act

(endo)

islessthanΔG

act

(exo)by2.37kcal/mol.Ithasbeenfoundprevi-

ouslythatthereactionofdeuterium-labeledBDwithMAreveals

an85/15preferenceforendoadducts(ΔG

act

(exo-endo)

~1.2kcal/mol).

[46]

Inthereactionsof2-X-BDsandMA,ΔG

act

(exo)andΔG

act

(endo)almosthavenocorrelationwithσ

p

.However,forΔG′

act

(exo)andΔG′

act

(endo),thecorrelationsbecomemuchbetterin

quality,indicatingthattheelectronicfactorofsubstituentplays

asigni?cantroleactuallyduringthecycloadditionprocess.Both

ΔG′

act

(exo)andΔG′

act

(endo)increasewithanincreaseofσ

p

at

relativelysmallrates(Fig.2):

ΔG’

act

exoeT?0:849σ

p

t23:291;R

2

?0:3586

ΔG’

act

endoeT?3:5207σ

p

t21:016;R

2

?0:8219

Transformationofs-trans→s-cisisquitedifferentinenergy

for2-X-BDs,whichisresponsibleforpoorcorrelationsof

ΔG

act

(exo)andΔG

act

(endo)withσ

p

.For2-vi-BD,themoststa-

bleconformationis(s-cis,s-trans)amongthreeconformations

(theothertwoare(s-trans,s-trans)and(s-cis,s-cis)).Itcanpar-

ticipateinthecycloadditiondirectlywithoutthetransforma-

tion.Therefore,ΔG

act

isequaltoΔG′

act

.For2-NO

2

-BD,thes-

cisformismorestablethanthes-trans.So,ΔG

act

iseven

smallerthanΔG′

act

.

TheΔG

act

(exo-endo)valuesindicatethatthereactionsare

endo-selectivewithallsubstituents.Theendopreferenceis

moresigni?cantwithaEDGonthedieneandthecorelation

resultis

ΔG

act

exoC0endoeT?C02:6717σ

p

t2:2754;R

2

?0:8221

Reactionsof1-X-CPsand2-X-CPswithMA

For1-X-CPs,ΔG

act

(exo)isintherangefrom15.52to26.02kcal/

molandΔG

act

(endo)isfrom15.68to23.88kcal/mol(Table2).

AnEDGonthedieneisinfavorofthereaction,namelyboth

ΔG

act

(exo)andΔG

act

(endo)increasewithanincreaseofσ

p

.Their

correlationsareexcellentinquality(Fig.3):

ΔG

act

exoeT?8:06σ

p

t20:46;R

2

?0:9169

ΔG

act

endoeT?6:74σ

p

t18:58;R

2

?0:9416

Theendoperferenceissigni?cantforallsubstituentsexcept

forX?OH.However,theelectronicfactorshowsapoorcorrela-

tionwiththeendo–exoselectivitytrend.ForunsubstitutedCP,

ΔG

act

(endo)is2.07kcal/mollessthanΔG

act

(exo),whichmeans

anoverestimatedendopreferencecomparedwiththeexperi-

mentalresults.

[17,46]

ΔG

act

(endo)forX?OHisobviouslydeviated

fromthetrendlineandresultsinaslightexopreference(ΔG

act

(exo-endo)C00.15kcal/mol).ByexaminingtheexoTSstructure,

itisfoundthathydroxygroupisgauchetowardMAwithadihe-

dralangleC

2

?C

1

–O–H151.8°andthedistancebetweenHatom

inC0OHandOatominC?Ois1.991?.Thegeometrysuggests

thatahydrogenbondinteractionispresentbetweenthediene

anddienophileunits,whichmaycontributeanadditionalstabili-

zationtotheexoTS.Incontrast,suchinteractionisnotfoundin

theendoTS.

Figure2.PlotofΔG′

act

versusσ

p

inthereactionsof2-X-butadieneswith

maleicanhydride

Table2.ActivationenergiesΔG

act

intheD–Areactionsof1-

X-CPsand2-X-CPswithMAtheM06-2X/6-31G(d)method

(kcal/mol)

X1-X-CP2-X-CP

ExoEndoExoEndo

OH15.5215.6819.7516.84

OCH

3

19.1215.9420.3417.70

CH

3

19.2717.8319.7017.41

Vi20.6619.2519.9318.63

H20.6518.5720.6518.57

Cl22.7620.6421.1321.10

CHO25.1621.5322.4321.38

CF

3

24.4321.2522.1822.66

CN26.0223.8822.8722.94

NO

2

25.4223.2223.1223.90

Figure3.PlotofΔG

act

versusσ

p

inthereactionsof1-X-

cyclopentadieneswithmaleicanhydride

DIELS–ALDERREACTIONSOFSUBSTITUTEDDIENESWITHMALEICANHYDRIDE

J.Phys.Org.Chem.2015Copyright?2015JohnWiley&Sons,Ltd.wileyonlinelibrary.com/journal/poc

Inthereactionsof2-X-CPswithMA,ΔG

act

(exo)isintherange

from19.70to23.12kcal/molandΔG

act

(endo)isfrom16.84to

22.94kcal/mol(Table2).BothE

a

(exo)andΔG

act

(endo)increase

withanincreaseofσ

p

.Theircorrelationswithσ

p

areexcellent

(Fig.4):

ΔG

act

exoeT?3:15σ

p

t20:65;R

2

?0:9245

ΔG

act

endoeT?6:27σ

p

t19:00;R

2

?0:9791

Obviously,thereactionisalsofavoredbyanEDGonthediene

ingeneral.ΔG

act

(endo)ismoresensitivelyin?uencedbythe

electroniceffectofsubstituent.Anegativecorrelationisfound

betweenΔG

act

(exo-endo)andσ

p

:

ΔG

act

exoC0endoeT?C03:13σ

p

t1:65;R

2

?0:8759

Thebalancepointofendo–exoselectivityisatσ

p

=0.52,corre-

spondingtoamoderateEWG.ThetrendpredictsthatanyEDG

mayleadtosigni?cantendoselectivitywhileonlyastrong

EWGmayhaveexoselectivity.

Reactionsofα-X-furansandβ-X-furanswithMA

Forα-X-furans,ΔG

act

(exo)variesfrom17.03to30.96kcal/moland

ΔG

act

(endo)isfrom20.56to29.48kcal/mol(Table3).Correlation

withσ

p

resultsin(Fig.5):

ΔG

act

exoeT?9:65σ

p

t23:40;R

2

?0:8693

ΔG

act

endoeT?6:11σ

p

t24:30;R

2

?0:7736

BothΔG

act

(exo)andΔG

act

(endo)increasewithanincreasing

σ

p

,indicatingthatthereactionisalsofavoredbyanEDGon

thediene.ForthereactionofunsubstitutedfuranandMA,a

previoustheoreticalstudyshowedthattheendoTSisslightly

favoredby0.2kcal/mol,

[47]

whichisconsistenttothisstudy.

However,morerecently,aslightexoselectivitywasfoundex-

perimentallybasedonthekineticconstants.

[19]

ForX?OH,a

hydrogenbondbetweenOHandC?OintheexoTSmayalso

beresponsiblefortheabnormallylargedifferenceofΔG

act

(exo)

andΔG

act

(endo)aliketothereactionofα-OH-CP.Correlationof

ΔG

act

(exo-endo)withσ

p

tendstobepositivebutpoorin

quality.

Forβ-X-furans,ΔG

act

(exo)variesfrom21.25to27.92kcal/mol

andΔG

act

(endo)isfrom19.50to29.73kcal/mol(Table3).Corre-

lationwithσ

p

resultsin(Fig.6):

ΔG

act

exoeT?5:36σ

p

t23:46;R

2

?0:8801

ΔG

act

endoeT?8:36σ

p

t23:24;R

2

?0:9502

ΔG

act

(exo)andΔG

act

(endo)increasewithanincreaseofσ

p

,

andso,thereactionisfavoredbyanEDGonthediene.Like

thereactionsof2-X-BDsand2-X-CPs,thereisanegativecorrela-

tioninagoodqualitybetweenΔG

act

(exo-endo)andσ

p

forβ-X-

furans:

ΔG

act

exoC0endoeT?C03:00σ

p

t0:22;R

2

?0:8401

Theendo–exobalancepointisclosetotheparentfuran



p

=0).Therefore,astrongelectronicdonatingorwithdraw-

ingsubstituentmayresultinsigni?cantendoorexo

preference.

Figure4.PlotofΔG

act

versusσ

p

inthereactionsof2-X-

cyclopentadieneswithmaleicanhydride

Table3.ActivationenergiesΔG

act

intheD–Areactionsofof

MAwithα-X-furansandβ-X-furansbytheM06-2X/6-31G(d)

method(kcal/mol)

X1-X-furan2-X-furan

ExoEndoExoEndo

OH17.0322.3721.2520.27

OCH

3

20.6420.5621.5119.50

CH

3

22.1924.9223.3422.25

Vi25.1124.1922.8423.19

H24.2324.1924.2324.19

Cl26.4425.2724.4825.50

CF

3

27.8225.9824.5726.45

CN30.9629.4827.6729.15

CHO27.9928.8626.3127.05

NO

2

28.7528.0927.9229.73

Figure5.PlotofΔG

act

versusσ

p

inthereactionsofα-X-furanswithma-

leicanhydride

Y.QIU

wileyonlinelibrary.com/journal/pocCopyright?2015JohnWiley&Sons,Ltd.J.Phys.Org.Chem.2015

Reactionsofα-X-pyrolesandβ-X-pyroleswithMA

Inthereactionsofα-X-pyroles,ΔG

act

(exo)rangesfrom18.04to

34.43kcal/molandΔG

act

(endo)isfrom23.30to34.89kcal/mol

(Table4).Theircorrelationswithσ

p

resultin(Fig.7):

ΔG

act

exoeT?12:09σ

p

t25:77;R

2

?0:8519

ΔG

act

endoeT?9:37σ

p

t27:71;R

2

?0:8512

BothΔG

act

(exo)andΔG

act

(endo)increasewithanincrease

ofσ

p

,andso,thereactionisfavoredbyanEDGinthediene.

Fortheparentandα-substitutedpyroles,thereactionsareal-

waysexo-selectiveindifferentdegrees.Theabnormallylarge

magnitudeofΔG

act

(exo-endo)forX?OH(over5kcal/mol)

mayalsocomefromanadditionalstabilizationofhydrogen

bondbetweenOHandC?OintheexoTS.Correlationof

ΔG

act

(exo-endo)withσ

p

tendstobepositivebutpoorin

quality.

Inthereactionsofβ-X-pyroles,ΔG

act

(exo)rangesfrom21.70to

30.88kcal/molandΔG

act

(endo)isfrom22.34to35.40kcal/mol

(Table4).Correlationwithσ

p

resultsin(Fig.8):

ΔG

act

exoeT?7:85σ

p

t25:02;R

2

?0:9060

ΔG

act

endoeT?10:49σ

p

t27:12;R

2

?0:9558

BothΔG

act

(exo)andΔG

act

(endo)increasewithanincreaseof

σ

p

,andso,thereactionisfavoredbyanEDGsubstituenton

thediene.Fortheparentandninesubstituteddienes,allreac-

tionsareexo-selective.Formostofthem,thepreferenceisquite

strong.Similartotheotherβ-substituteddienes,agoodnegative

correlationisfoundbetweenΔG

act

(exo-endo)andσ

p

:

ΔG

act

exoC0endoeT?C02:63σ

p

C02:10;R

2

?0:8052

Therelativestabilityofexoandendoalsodecreaseswithan

increasingσ

p

.Theendo–exobalancepointisatσ

p

=C00.80,

whichiscorrespondingtoanextremelystrongEDGandoutof

therangeofsubstituentsconsideredhere.Therefore,although

trendisapprovedthattheendoTSismorefavoredbyanEDG,

itispredictedthatthereactionsshouldremainexo-selective

forcommonsubstitutedpyroles.

Table4.ActivationenergiesΔG

act

intheD–Areactionsofα-

X-pyrolesandβ-X-pyroleswithMAbytheM06-2X/6-31G(d)

method(kcal/mol)

Xα-X-pyroleβ-X-pyrole

ExoEndoExoEndo

OH18.0423.7921.9323.44

OCH

3

22.1823.3021.7022.34

CH

3

25.2227.1324.7426.14

Vi27.3728.9224.4927.24

H26.2928.1126.2928.11

Cl28.2129.0826.5729.61

CHO34.1134.1428.8431.75

CF

3

29.9130.1027.1831.50

CN34.4334.8930.8834.35

NO

2

33.3834.3431.5235.40

Figure7.PlotofΔG

act

versusσ

p

inthereactionsofα-X-pyroleswithma-

leicanhydride

Figure8.PlotofΔG

act

versusσ

p

inthereactionsofβ-X-pyrolesandma-

leicanhydride

Figure6.PlotofΔG

act

versusσ

p

inthereactionsofβ-X-furanswithma-

leicanhydride

DIELS–ALDERREACTIONSOFSUBSTITUTEDDIENESWITHMALEICANHYDRIDE

J.Phys.Org.Chem.2015Copyright?2015JohnWiley&Sons,Ltd.wileyonlinelibrary.com/journal/poc

Thestrengthofsubstituenteffectonthereactivity

Theforegoingresultshaveindicatedthatwemayhaveagood

predictionbytheelectroniceffectofsubstituentfromthehighly

correlationofΔG

act

orΔG′

act

withσ

p

foreachsetofreactions.It

hasfoundpreviously

[48]

thattheexperimentalreactivityofthe

D–Areactionishighlyrelatedwiththechargetransfer(CT)be-

tweenthedieneanddienophileunitsintheTS.Forthereac-

tionshere,theelectrontransferdirectionisfromthedieneto

MA.AnEDGonthedieneishelpfultotheCTandthenlower

ΔG

act

orΔG′

act

whileanEWGhasanoppositeeffect.ΔG

act

or

ΔG′

act

hasagoodcorrelationwiththeCTforeachsetofreac-

tions(datanotshown).Therefore,themechanismissupported

thattheelectroniceffectofsubstituentworksbyin?uencing

theCTintheTS.

Accordingtothefrontiermolecularorbital(FMO)andpertur-

bationtheory,highestoccupiedmolecularorbital–lowestunoc-

cupiedmolecularorbital(HOMO–LUMO)interactionsbetween

thedieneanddienophilecontributetolowertheactivationen-

ergyintheD–Areaction.

[49,50]

TheHOMOandLUMOenergies

ofthedieneslinearlycorrelateinsomedegreewithΔG

act

or

ΔG′

act

foreachsetofreactions(datanotshown,similartrends

werefoundpreviously).

[44]

Theelectrophilicityindexωisanotherindexappliedinthe

quantitativeanalysisforD–Areactionsintherecentyears.

[48,51–

53]

Itisameasureofreactant’selectrophilicpowerdeveloped

in1999byParretal.

[54]

andhasbeenfoundtobehighlycorre-

latedwithreactivityandbioactivity.

[55–57]

Theelectrophilicityin-

dexωiscalculatedbythefollowingequation:

ω?μ

2

=2ηeVeT

wheretheelectronicchemicalpotential

[58–61]

μ≈(E(HOMO)+E

(LUMO))/2andthechemicalhardness

[62]

η≈(E(LUMO)C0E

(HOMO).Itisfoundthattheelectrophilicityindicesofthedienes

alsolinearlycorrelateinsomedegreewithΔG

act

(exo)orΔG

act

(endo)(forsubstitutedBDs,ΔG′

act

isused)respectivelyineach

setofreactions(datanotshown).

Here,wearemoreinterestedtoexploreifanyfactorisrelated

withthestrengthofreactivityeffect,whichisquanti?edbythe

slope(ρ)of?ttinglinefromthelinearcorrelationofΔG

act

with

σ

p

.Obviously,itisapprovedthatC1substitutiongenerallyhas

alargerreactivityeffectthanC2substitution.Therulecanbede-

rivedfromearlyexperimentaldatawithsubstitutedBDsand

CPs.

[25]

Ingeneral,thestrengthorderfortheseparentdienesis

pyroles>furans>CPs>BDs.

TheHOMOandLUMOenergies,aswellastheirderivedindi-

ces:η,μandω,areusedasdescriptorstoanalyzequantitatively

variationoftheslopesρwithfourparentdienes.Thevaluesof

theseindicesarelistedinTable5.Thecorrelationresultsofthe

slopesρwiththeseindicesaresummarizedinTable6.

AccordingtotheFMOtheory,forthesenormalelectronde-

mandD–Areactions,theinteractionofHOMO

diene

andLUMO

MA

isdominant.Theirenergygapissmaller,thestrongerthesubstit-

uenteffect.

[7]

Thetrendnodoubtiscon?rmedbyourresults.

However,thedominantinteractiondoesnotmeanagoodpre-

diction.Thecorrelationqualityofthereactivityeffectstrength

(ρ)withHOMOenergiesoftheparentdienesisfarfromdesirable

(theaverageR

2

0.6687).Thecorrelationisalsonotgoodforη(R

2

0.6037intheaverage).Itbecomesquitegoodorevenextremely

excellentforΕ(LUMO),μandω(R

2

0.8561,0.9019and0.8791re-

spectivelyintheaverage).Especially,thestrengthofreactivity

effectatC2substitutionmaybewellpredictedfromthethreein-

dicesoftheparentdiene(Table6).

CONCLUSIONS

Basedontheactivationenergiescalculated,thesubstituentef-

fectsonthereactivityandendo–exoselectivityhavebeeninves-

tigatedfortheD–Areactionsofsubstituteddieneswithmaleic

anhydride.Themainconclusionsincludethefollowing:

EachsetofthereactionsisfavoredbyanEDGsubstituentand

disfavoredbyanEWGonthediene.Allofthemarethenormal

electrondemandD–Areactions.However,thesubstituenteffect

onthereactivityisdifferentinstrength,dependingonthesub-

stitutionpositionandtheparentdiene.Ingeneral,C1substitu-

tionisstrongerthanC2substitutionwithasameparentdiene.

Thestrengthhasanorderofpyroles>furans>CPs>BDs.Itis

highlycorrelatedwiththeLUMOenergy,theelectronicchemical

potentialandtheelectrophilicityofparentdienewhereasless

correlatedwiththeHOMOenergyandthechemicalhardness.

WithC1subsitution,theendoselectivityisdemonstratedfor

allBDsandamajorityofCPs.Theendoorexoselectivityisfound

fordifferentfuranswhiletheexoselectivityalwaysremains

Table5.Ε(ΗΟΜΟ),Ε(LUΜΟ),η,μandωoftheparentdienes

(eV)

DieneΕ(ΗΟΜΟ)Ε(LUΜΟ)ημω

BD(s-cis)C07.810.568.37C03.620.78

CPC07.240.828.06C03.210.64

FuranC07.551.789.32C02.890.45

PyroleC06.912.599.51C02.160.25

MAC010.12C02.028.10C06.072.27

Table6.Correlationresultsofthestrengthofreactivityef-

fect(ρ)withE(HOMO),E(LUMO),η,μandωoftheparent

dienes

ρsourceFittinglineR

2

C1-exoρ=4.65E(HOMO)+43.510.6494

ρ=2.37E(LUMO)+5.770.9809

ρ=2.72ηC014.840.7451

ρ=3.59μ+19.860.9932

ρ=C09.47ω+14.190.9878

C1-endoρ=3.30E(HOMO)+31.490.7236

ρ=1.20E(LUMO)+5.420.5597

ρ=1.10ηC02.560.2701

ρ=2.01μ+13.110.6861

ρ=C04.76ω+9.670.5523

C2-exoρ=6.25E(HOMO)+50.420.6481

ρ=3.15E(LUMO)C00.240.9589

ρ=3.60ηC027.460.7206

ρ=4.79μ+18.540.9760

ρ=C012.78ω+11.070.9960

C2-endoρ=6.22E(HOMO)+53.070.6536

ρ=3.07E(LUMO)+2.740.9249

ρ=3.47ηC023.410.6789

ρ=4.69μ+21.100.9522

ρ=C012.57ω+13.810.9803

Y.QIU

wileyonlinelibrary.com/journal/pocCopyright?2015JohnWiley&Sons,Ltd.J.Phys.Org.Chem.2015

unchangedforallpyroles.Forfuransandpyroles,thetrendap-

pearsthattheendoTSismorefavoredbyanEWGandtheexo

TSismorefavoredbyanEDG,butthecorrelationqualityis

unsatisfatory.

WithC2substitution,theselectivityisendoforallBDsand

shiftsfromendotoexowhenthesubstituentischangedfrom

EDGtoEWGforCPsandfurans.Theexoselectivityisfoundfor

allpyroles.ForallfoursetsofC2-substituteddienes,thetrend

thattheendoTSismorefavoredbyanEDGhasagoodcorrela-

tionquality.

Ourresultsindicatethattheinferencethatanincreaseof

necleophilicitycausedbyanEDGonthedienefavorstheendo

TSiseffectiveonlywithC2substitution.WithC1substitution,

thetrendisambiguousorevenopposite.

Theelectroniceffectofsubstituentexitsthemostuniversally

andintrinsicallyamongpossiblein?uencingfactorswhensubsti-

tutiononaspeci?cdiene-dienophilesystemisconsidered.We

supposethatthisstudymaybehelpfultofurtherunderstand

andapplytheD–Areaction.

Acknowledgements

Theauthorisgratefulfor?nancialsupportfromHanshanNormal

University(GeneralResearchProgram).

REFERENCES

[1]O.Diels,K.Alder,JustusLiebigsAnn.Chem.1928,460,98.

[2]J.Sauer,R.Sustmann,Angew.Chem.Int.Ed.Engl.1980,19,779.

[3]M.J.Dewar,S.Olivella,J.J.Stewart,J.Am.Chem.Soc.1986,108,

5771.

[4]K.Houk,Y.T.Lin,F.K.Brown,J.Am.Chem.Soc.1986,108,554.

[5]R.D.Bach,J.J.McDouall,H.B.Schlegel,G.J.Wolber,J.Org.Chem.

1989,54,2931.

[6]K.N.Houk,J.Gonzalez,Y.Li,Acc.Chem.Res.1995,28,81.

[7]F.A.Carey,R.J.Sundberg,AdvancedOrganicChemistry:PartA:Struc-

tureandMechanism,5thed.,Springer,NewYork,2007.

[8]K.Alder,G.Stein,Angew.Chem.1937,50,510.

[9]K.Alder,JustusLiebigsAnn.Chem.1951,571,157.

[10]R.Hoffmann,R.B.Woodward,J.Am.Chem.Soc.1965,87,4388.

[11]K.Houk,TetrahedronLett.1970,11,2621.

[12]A.Arrieta,F.P.Cossio,B.Lecea,J.Org.Chem.2001,66,6178.

[13]C.S.Wannere,A.Paul,R.Herges,K.N.Houk,H.F.SchaeferIII,P.V.R.

Schleyer,J.Comput.Chem.2007,28,344.

[14]Y.Apeloig,E.Matzner,J.Am.Chem.Soc.1995,117,5375.

[15]M.Imade,H.Hirao,K.Omoto,H.Fujimoto,J.Org.Chem.1999,64,

6697.

[16]M.Sodupe,R.Rios,V.Branchadell,T.Nicholas,A.Oliva,J.J.

Dannenberg,J.Am.Chem.Soc.1997,119,4232.

[17]J.G.Martin,R.K.Hill,Chem.Rev.1961,61,537.

[18]J.Furukawa,Y.Kobuke,T.Fueno,J.Am.Chem.Soc.1970,92,6548.

[19]L.Rulí?ek,P.?ebek,Z.Havlas,et.al.,J.Org.Chem.2005,70,6295.

[20]Y.Lam,P.H.Cheong,J.M.BlascoMata,S.J.Stanway,V.Gouverneur,

K.N.Houk,J.Am.Chem.Soc.2009,131,1947.

[21]J.I.García,J.A.Mayoral,L.Salvatella,Acc.Chem.Res.2000,33,658.

[22]G.Gayatri,G.N.Sastry,J.Phys.Chem.A2009,113,12013.

[23]C.Chiappe,M.Malvaldi,C.S.Pomelli,J.Chem.TheoryComput.2009,

6,179.

[24]J.I.García,J.A.Mayoral,L.Salvatella,Tetrahedron1997,53,6057.

[25]D.Craig,J.J.Shipman,R.B.Fowler,J.Am.Chem.Soc.1961,83,2885.

[26]M.J.Dewar,A.B.Pierini,J.Am.Chem.Soc.1984,106,203.

[27]M.C.Kloetzel,TheDiels-AlderReactionwithMaleicAnhydride,John

Wiley&Sons,Inc.,HobokenNJ,2004.

[28]Y.W.Goh,B.R.Pool,J.M.White,J.Org.Chem.2008,73,151.

[29]A.D.Becke,J.Chem.Phys.1993,98,1372.

[30]W.Kohn,A.D.Becke,R.G.Parr,J.Phys.Chem.1996,100,12974.

[31]T.C.Dinadayalane,R.Vijaya,A.Smitha,G.N.Sastry,J.Phys.Chem.A

2002,106,1627.

[32]M.Linder,T.Brinck,Phys.Chem.Chem.Phys.2013,15,5108.

[33]S.M.Bakalova,J.Kaneti,J.Phys.Chem.A2008,112,13006.

[34]S.M.Bakalova,A.G.Santos,J.Org.Chem.2004,69,8475.

[35]G.O.Jones,V.A.Guner,K.Houk,J.Phys.Chem.A2006,110,1216.

[36]S.N.Pieniazek,F.R.Clemente,K.N.Houk,Angew.Chem.-Int.Edit.

2008,47,7746.

[37]S.Osuna,J.Morera,M.Cases,K.Morokuma,M.Solà,J.Phys.Chem.A

2009,113,9721.

[38]R.S.Paton,S.Kim,A.G.Ross,S.J.Danishefsky,K.Houk,Angew.

Chem.-Int.Edit.2011,50,10366.

[39]R.S.Paton,J.L.Mackey,W.H.Kim,J.H.Lee,S.J.Danishefsky,K.N.

Houk,J.Am.Chem.Soc.2010,132,9335.

[40]S.E.Wheeler,A.J.McNeil,P.Müller,T.M.Swager,K.N.Houk,J.Am.

Chem.Soc.2010,132,3304.

[41]K.Black,P.Liu,L.Xu,C.Doubleday,K.N.Houk,Proc.Natl.Acad.Sci.

U.S.A.2012,109,12860.

[42]M.J.Frisch,G.W.Trucks,H.B.Schlegel,G.E.Scuseria,M.A.Robb,J.

R.Cheeseman,G.Scalmani,V.Barone,B.Mennucci,G.A.Petersson,

H.Nakatsuji,M.Caricato,X.Li,H.P.Hratchian,A.F.Izmaylov,J.

Bloino,G.Zheng,J.L.Sonnenberg,M.Hada,M.Ehara,K.Toyota,

R.Fukuda,J.Hasegawa,M.Ishida,T.Nakajima,Y.Honda,O.Kitao,

H.Nakai,T.Vreven,J.J.A.Montgomery,J.E.Peralta,F.Ogliaro,M.

Bearpark,J.J.Heyd,E.Brothers,K.N.Kudin,V.N.Staroverov,R.

Kobayashi,J.Normand,K.Raghavachari,A.Rendell,J.C.Burant,S.

S.Iyengar,J.Tomasi,M.Cossi,N.Rega,J.M.Millam,M.Klene,J.E.

Knox,J.B.Cross,V.Bakken,C.Adamo,J.Jaramillo,R.Gomperts,R.

E.Stratmann,O.Yazyev,A.J.Austin,R.Cammi,C.Pomelli,J.W.

Ochterski,R.L.Martin,K.Morokuma,V.G.Zakrzewski,G.A.Voth,

P.Salvador,J.J.Dannenberg,S.Dapprich,A.D.Daniels,O.Farkas,

J.B.Foresman,J.V.Ortiz,J.Cioslowski,D.J.Fox,RevisionA,02ed.,

Gaussian,Inc.,WallingfordCT,2009.

[43]C.Hansch,A.Leo,R.Taft,Chem.Rev.1991,91,165.

[44]R.Robiette,J.Marchand-Brynaert,D.Peeters,J.Org.Chem.2002,67,

6823.

[45]X.Jiang,R.Wang,Chem.Rev.2013,113,5515.

[46]L.M.Stephenson,D.E.Smith,S.P.Current,J.Org.Chem.1982,47,

4170.

[47]S.Calvo-Losada,D.Suárez,J.Am.Chem.Soc.2000,122,390.

[48]L.R.Domingo,J.A.Sáez,Org.Biomol.Chem.2009,7,3576.

[49]R.Sustmann,PureAppl.Chem.1974,40,569.

[50]K.N.Houk,Acc.Chem.Res.1975,8,361.

[51]L.R.Domingo,M.J.Aurell,P.Pérez,R.Contreras,Tetrahedron2002,

58,4417.

[52]L.R.Domingo,E.Chamorro,P.Perez,J.Phys.Chem.A2008,112,

4046.

[53]Y.Xia,D.Yin,C.Rong,Q.Xu,D.Yin,S.Liu,J.Phys.Chem.A2008,112,

9970.

[54]R.G.Parr,L.v.Szentpály,S.Liu,J.Am.Chem.Soc.1999,121,1922.

[55]P.K.Chattaraj,U.Sarkar,D.R.Roy,Chem.Rev.2006,106,2065.

[56]P.K.Chattaraj,D.R.Roy,Chem.Rev.2007,107,PR46.

[57]P.K.Chattaraj,S.Giri,S.Duley,Chem.Rev.2011,111,PR43.

[58]R.G.Parr,L.J.Bartolotti,J.Am.Chem.Soc.1982,104,3801.

[59]R.G.Parr,L.J.Bartolotti,J.Phys.Chem.1983,87,2810.

[60]R.G.Parr,W.Yang,J.Am.Chem.Soc.1984,106,4049.

[61]C.Pérez-Méndez,P.Fuentealba,R.Contreras,J.Chem.Theory

Comput.2009,5,2944.

[62]G.Makov,J.Phys.Chem.1995,99,9337.

SUPPORTINGINFORMATION

Additionalsupportinginformationmaybefoundintheonline

versionofthisarticleatthepublisher’swebsite

DIELS–ALDERREACTIONSOFSUBSTITUTEDDIENESWITHMALEICANHYDRIDE

J.Phys.Org.Chem.2015Copyright?2015JohnWiley&Sons,Ltd.wileyonlinelibrary.com/journal/poc

献花(0)
+1
(本文系QiuYG_Libra...首藏)