同步练习
11.3多边形及其内角和
1.填空:
(1)平面内,由_____________________________________________叫做多边形.组成多边形的线段叫做______.如果一个多边形有n条边,那么这个多边形叫做______.多边形____________叫做它的内角,
多边形的边与它的邻边的______组成的角叫做多边形的外角.
连结多边形________________的线段叫做多边形的对角线.
(2)画出多边形的任何一条边所在直线,如果整个多边形都在______,那么这个多边形称作凸多边形.
(3)各个角______,各条边______的______叫做正多边形.
2.(1)n边形的内角和等于____________.这是因为,从n边形的一个顶点出发,可以引______条对角线,它们将此n边形分为______个三角形.而这些三角形的内角和的总和就是此n边形的内角和,所以,此n边形的内角和等于180°×______.
(2)请按下面给出的思路,进行推理填空.
如图,在n边形A1A2A3…An-1An内任取一点O,依次连结______、______、______、……、______、______.则它们将此n边形分为______个三角形,而这些三角形的内角和的总和,减去以O为顶点的一个周角就是此多边形的内角和.所以,n边形的内角和=180°×______-()=()×180°.
3.任何一个凸多边形的外角和等于______.它与该多边形的______无关.
4.正n边形的每一个内角等于______,每一个外角等于______.
5.若一个正多边形的内角和2340°,则边数为______.它的外角等于______.
6.若一个多边形的每一个外角都等于40°,则它的内角和等于______.
7.多边形的每个内角都等于150°,则这个多边形的边数为______,对角线条数为______.
8.如果一个角的两边分别垂直于另一个角的两边,其中一个角为65°,则另一个角为______度.
9.选择题:
(1)如果一个多边形的内角和等于它的外角和的两倍,则这个多边形是().
(A)四边形(B)五边形
(C)六边形(D)七边形
(2)一个多边形的边数增加,它的内角和也随着增加,而它的外角和().
(A)随着增加(B)随着减少
(C)保持不变(D)无法确定
(3)若一个多边形从一个顶点,只可以引三条对角线,则它是()边形.
(A)五(B)六(C)七(D)八
(4)如果一个多边形的边数增加1,那么它的内角和增加().
(A)0°(B)90°(C)180°(D)360°
(5)如果一个四边形四个内角度数之比是2∶2∶3∶5,那么这四个内角中().
(A)只有一个直角(B)只有一个锐角
(C)有两个直角(D)有两个钝角
(6)在一个四边形中,如果有两个内角是直角,那么另外两个内角().
(A)都是钝角(B)都是锐角
(C)一个是锐角,一个是直角(D)互为补角
10.已知:如图四边形ABCD中,∠ABC的平分线BE交CD于E,∠BCD的平分线CF交AB于F,BE、CF相交于O,∠A=124°,∠D=100°.求∠BOF的度数.
11.(1)已知:如图1,求∠1+∠2+∠3+∠4+∠5+∠6___________.
(2)已知:如图2,求∠1+∠2+∠3+∠4+∠5+∠6+∠7+∠8____________.
12、一张长方形的桌面,减去一个角后,求剩下的部分的多边形的内角和.
13.小华从点A出发向前走10米,向右转36°,然后继续向前走10米,再向右转36°,他以同样的方法继续走下去,他能回到点A吗?若能,当他走回点A时共走了多少米?若不能,写出理由.
1
参考答案
13.可以走回到A点,共走100米.
|
|